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Resümee/Abstract 
 

Väikesemahulised autod autonoomse sõidu uurimiseks 

 

Isejuhtivad autod (autonoomsed autod, roboautod) on sõidukid, mis saavad sõita ilma inimese 

sekkumiseta. Viimastel aastakümnetel on see teadusvaldkond saanud palju tähelepanu. Kasvab 

vajadus liikluse ohutuse ja tõhususe parandamise järele. Isejuhtivad autod lubavad olla ohutud. 

Peamine põhjendus on see, et inimlike vigade kõrvaldamise ja algoritmide kasutamisega saaks 

enamikus olukordades ettetulevate vigade ja õnnetuste arvu drastiliselt vähendada. 

Autonoomne sõit on praegu põhjalikult uuritud valdkond, kuid olulised väljakutsed on endiselt 

lahtised, mistõttu on järgmistel aastakümnetel vaja teha märkimisväärseid uuringuid. Kuna 

elusuuruses katseplatvormide maksumus autonoomse sõidu uuringute jaoks on väga kõrge, 

tekib vajadus kasutada katseplatvormidena väiksemaid sõidukeid. See lõputöö uurib sellise 

meetodi elujõulisust, hinnates väikesemahulise isejuhtiva auto platvormi Donkey Car jõudlust 

ja sobivust autonoomse sõidu uuringute erinevate aspektide jaoks. Uuriti platvormi tajumist, 

lokaliseerimist ja kaardistamist, planeerimist ja täielikke võimalusi ning võrreldi neid avalikult 

kättesaadavate päriselus isejuhtivate autode katsetega. Saavutatud tulemused näitasid, et 

väikesemahulised autod on võimelised teostama autonoomse sõidu uuringuid vastuvõetaval 

tasemel võrreldes pärisautodega.. 

CERCS: S274 Teaduse uurimismetodoloogia, T125 Automatiseerimine, robootika,  

control engineering 

Märksõnad: väikesemahulise autod, autonoomsed autod, SLAM, hindamine, isejuhtivad 

 

Small-scale cars for autonomous driving research 

 

Self-driving cars (autonomous cars, robo cars) are vehicles that can drive without human input. 

In the recent decades, this field of science has received a lot of attention. There is a growing 

need to improve the safety and effectiveness of traffic. Self-driving cars have the promise of 

being safe. The main reasoning is that by removing human error, and utilising algorithms, 

the number of mistakes and accidents that would arise in most situations could be drastically 

reduced. Autonomous driving is a heavily investigated area currently, but significant 

challenges remain open, thus requiring significant research during the decades to come. As the 

cost of life-size test platforms for autonomous-driving research is very high, the need to use 

smaller-scale vehicles to be employed as test platforms arises. This thesis investigates the 

viability of such a method, by evaluating the performance and suitability of a small-scale self-

driving car platform, the Donkey Car, for different aspects of autonomous 

driving research. Perception, localization and mapping, planning and end-to-end capabilities of 

the platform were investigated and compared with publicly available real-life self-driving 

car experiments. The results achieved showed that small-scale cars are capable of 

performing autonomous driving research at an acceptable level in comparison with real-life 

cars. 

CERCS: S274 Research methodology in science, T125 Automation, robotics, control 

engineering 

Keywords: Small-scale cars, autonomous vehicles, SLAM, evaluation, self-driving 
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1 Introduction 
 

Autonomous vehicles have become prevalent in the last decade, gaining commercial popularity. 

The knowledge surrounding this technology is still in its early stages, with many companies 

(such as Tesla, Waymo, etc.) [1] racing to become the best in this field. The main issues 

autonomous driving currently faces are issues of safety and economics [2]. 

There is a growing need to increase the testing as most vehicles rely on data to be able to 

successfully learn to drive. One potential method of providing easy and cost-effective research 

is by utilising small-scale self-driving platforms. This would hasten the research by easy 

deployment of small vehicles and cut costs with budgeting. This thesis tackles the suitability of 

such a solution by demonstrating that small-scale vehicles can perform autonomous driving 

research on par with regular size self-driving vehicles. 

 

1.1 Contributions 
 

The work done in this thesis aims to answer the question of suitability of small-scale cars for 

autonomous driving research by: 

● Researching previous work on both small- and large-scale autonomous driving 

platforms 

● Proposing and developing experiments necessary to give an answer to the question of 

suitability of small-scale cars for autonomous driving research by performing these 

experiments, and validating the results by comparing with real-life vehicle where 

applicable 

There are also indirect technical contributions resulting from thesis work: 

• Creation of Donkey Car image capable of running ROS and donkeycar Python library 

• Fixing of Donkey Car IMU unit to enable its use in ROS 

• Several Donkey Car parts: 

o Object detection 

o Path planning 

o Trajectory creator 

o Path planning controller capable of sending images and receiving trajectories 

• Several python scripts: 

o Socket server capable of receiving images and sending generated trajectories 

o Google Cartographer and Hector SLAM configuration files necessary to enable 

mapping on the Donkey Car 

All of the data and files have been made available online, on Github [3]. 

 

1.2 Structure of the manuscript 
 

The remainder of the manuscript is structured as follows. Chapter 2 will tackle literature review 

on autonomous vehicles, the challenges that current autonomous driving research poses, and 

give a brief introduction to small-scale platforms. Chapter 3 will focus on the methodology of 

the thesis, introducing the car used and the experiments performed. Chapter 4 will give the 
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results achieved in the experiments and discussion regarding those results. Finally, chapter 5 

will give the conclusions that arise from the work and any future work that would be necessary. 

 

2 Literature review 
 

This chapter covers the introduction to autonomous vehicles, common autonomous driving 

architectures, challenges in autonomous vehicle research and overview on small-scale cars and 

its research. 

 

2.1 Autonomous vehicles 
 

An autonomous vehicle (Figure 1) [4] is a vehicle that can perform all its functions without the 

need of any human intervention, through its ability to sense and perceive its surroundings. To 

do that it employs different types of sensors such as cameras, lidars, GPS, odometry, inertial 

measurement units (IMU) etc.  

Autonomy in autonomous vehicles is divided into six levels [5], each representing different 

ratio between human input necessary and autonomy of the car: 

• Level 0 - no automation: The vehicle is equipped with no autonomation, requiring the 

human driver to be fully in control of the vehicle. 

• Level 1 - hands on: The vehicle can do one or more features automatically, such as 

cruise control. The human driver needs to perform all the other tasks. The Mercedes-

Benz was a pioneer in this with its radar-managed cruise control [6]. 

• Level 2 - hands off: Vehicle can perform two or more features autonomously, such as 

steering and acceleration. The human driver needs to monitor all tasks and perform the 

rest. This level of autonomy is what most commercial autonomous vehicles are 

equipped with, such as the Mercedes S-Class [6]. 

• Level 3 - eyes off: The vehicle has environmental detection capabilities and uses it to 

drive. The human can take his eyes off the road but still needs to be able to intervene 

should the need arise. This level of autonomous driving is starting to be introduces more 

and more in specific regions of the world (such as Mercedes-Benz Drive Pilot [7]). 

• Level 4 - mind off: The vehicle can perform all driving tasks under certain conditions. 

The human driver still has the option of intervention. This level of autonomy is very 

much in the early stages of research, with only a small set of companies (Waymo is 

introducing driverless taxis in the USA [8]).  

• Level 5 - steering wheel optional: The vehicle can perform all driving tasks under all 

conditions. No human attention or intervention is needed. This level of autonomy is 

currently not commercially available, however, there are some predictions as to when 

this will be available. Experts state that until the year 2035, level 5 vehicles will not be 

available commercially [9]. 
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Figure 1: A Tesla autonomous vehicle driving on the road. Source: Micheal Simari, Car and 

Driver [10] 

To perform driving, most autonomous vehicles use two distinct methods: 

• Modular pipeline approach 

• End-to-end driving 

 

2.2 Modular pipeline approach 
 

The modular approach (Figure 2) splits the autonomous driving pipeline into several separate 

tasks such as perception, localization, planning, decision making, control... 

 
Figure 2: An example of a modular autonomous driving pipeline [11] 

The advantage of such a method is that it allows for division of labour, which allows for 

development of autonomous tasks onto specific teams which can be independent of each other. 

Such systems are then able to be operational if the intermediary outputs are working. While the 

“divide and conquer” paradigm has its benefits, it also has the drawback of being complex and 

requiring significant manual design. The end-to-end approach will be explained in section 2.6 

End-to-end driving. 
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2.3 Perception in autonomous driving 
 

Perception is the ability of an autonomous vehicle to utilize many different sensors such as 

cameras, LiDARs, ultrasonic distance sensors and more, to perceive the world. 

For humans to perceive the world around us, they utilize different senses such as sight, smell, 

vision... The same goes for autonomous vehicles. Utilizing many different sensors an 

autonomous vehicle can more accurately perceive the world around it to perform the necessary 

tasks. 

 

2.3.1 Camera 

 

A camera (Figure 3) is a specialized image sensor that detects visible light spectrum reflected 

from objects. In terms of autonomous driving, it is mostly used in object detection such as traffic 

lights, people, vehicles, roads and other section necessary for driving. The advantage of such 

sensors is that they can achieve high quality necessary for accurate image processing while 

being on the lower end of cost. The main disadvantage is that they have trouble working in 

adverse weather conditions such as rain or snow [12].  

 
Figure 3: An Allied Vision Mako G-319C Camera. Source: University of Tartu Autonomous 

Driving Lab 

 

2.3.2 Lidar 

 

Light Detection And Ranging (LiDAR) is one of the most common sensors for autonomous 

vehicles [13]. Used for localization and mapping, this device uses light in the form of a pulsed 

laser to measure distances. The Lidar device (Figure 4) emits pulsed light waves from a laser 

into the environment. These laser waves are then returned from objects they collide with and 

return to the sensor, where the time it took for the wave to return is calculated. The device is 

also rotated at very high speeds to create a set of points that can be processed into a 2D or 3D 

map depending on the type of sensor. This set of points is called a point-cloud map. 
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Figure 4: A Velodyne Puck 32MR. Lidar device. Source: Velodyne 

 

2.4 Localization in autonomous driving 
 

Localization (and mapping) is the ability of the car to orient itself in the real world, and its 

ability to create a map of the environment using various sensors that it has access to. 

For the vehicle to localize itself in the environment, data acquired from the car sensors is used.  

The most common method autonomous vehicles use for localization and mapping is SLAM 

(Simultaneous Localization And Mapping) algorithms. This is the method of construction of a 

map and orientation of a vehicle simultaneously. There are many different algorithms that are 

used to do this, and some of them are: 

● Particle filter [14] 

● Kalman filter [15] 

● GraphSLAM [16] 

 

The particle filter (also known as the Monte-Carlo localization) is a localization algorithm that 

utilizes possible states (i.e., Particles) to estimate the likely position of the vehicle in a map 

(Figure 5). The algorithm uniformly distributes a set of particles on the map with the same 

certainty. In the next measurement all particles are updated with the likelihood of the vehicle 

location based on the observation of the environment. The main advantage of such algorithms 

is that they are relatively easy to implement and scale very well. However, they are 

computationally expensive. 
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Figure 5: Particle filter visualization [17] 

 

Graph based SLAM, as the name suggests, works on the principle of graphs, whose nodes 

represent the environment (location of the vehicle or other objects) and the edge between nodes 

encodes a sensor measurement that constrains the connected poses (Figure 6). As the vehicle 

moves in the environment the algorithm detects when it revisits a location and uses this 

information to improve map consistency. It then performs a global optimisation of the graph to 

find the most likely position of all objects and update the map. This optimized graph is then 

used to determine the vehicle’s current pose in real time. 

 

 
Figure 6: GraphSLAM visualization [18]  

 

2.5 Planning and control in autonomous driving 
 

Planning [19] is the ability of an autonomous vehicle to utilize data acquired from sensors to 

plan a trajectory to reach a specific destination. Planning methods are generally divided into 

three functions: global route planning, local behaviour planning and local trajectory planning. 

Global route planning (Figure 7) is responsible for finding the best road level path in a network, 

represented as a directed graph containing edges and nodes. Such planners search in the graph 

to find the sequence that links the start and end goal with minimal cost. Common global route 

planning algorithms are Djikstra and A* algorithms. 
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Figure 7: A global and local route planner visualization [20] 

Local behaviour and trajectory planning algorithms are responsible to create a safe trajectory 

based on the global route already created. Common local planning algorithms include the pure 

pursuit and potential field method. 

Pure pursuit (Figure 8) works on the principle of calculating a goal that is a specific distance 

away from the vehicle called the lookahead distance, giving an angular velocity necessary for 

it to reach the position. The goal point is then updated, and the process repeated until the final 

point is reached. While this algorithm is easy to implement and to work with. It has difficulty 

following the exact path needed to reach and will sometime not stabilize and reach it. 

 
Figure 8: An example of pure pursuit [21] 

 

The potential field method (Figure 9) works on the principle of potential fields. Every object 

found in the environment, and the goal position is assigned to what is called potential force, 

which is attracting the vehicle towards the goal position, and repelling it from any obstacle, thus 

preventing collisions. Similarly, to pure pursuit, it has the advantage of easy implementation, 

however the algorithm sometimes reaches a “local minimum”, where the attractive and 

repulsive forces are the same, thus stopping the vehicle and preventing it from reaching the 

goal. 
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Figure 9: An example of the potential field method [22] 

 

 

2.6 End-to-end driving 
 

An end-to-end architecture (Figure 10) aims to combine all modules into one, i.e., to feed all 

inputs into a single algorithm that then directly outputs the driving policy.   

 
Figure 10: Visual comparison of end-to-end vs modular approach [11] 

 

This architecture was first introduced in 2016 by Nvidia [23]. It was a 9-layer Convolutional 

Neural Network that used a camera image as input and output a steering angle and acceleration. 

While this method has the advantage of simplicity of implementation and integration, it is also 

difficult to interpret due to the complexity of deep learning models. In the following subsections 

two dominant paradigms in end-to-end will be explained – imitation and reinforcement 

learning. 
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2.6.1 Imitation learning 

 

Imitation learning [24] is the more dominant paradigm used in end-to-end driving. It is a 

supervised learning approach in which a model is trained to mimic a specific behaviour. In the 

case of autonomous driving, this is the driving of a human driver, and the mimicked behaviour 

is driving commands such as steering, acceleration and braking. This method is reliant on the 

quality of the driver; hence it can be very accurate if the driver is driving perfectly, however, 

this also has the problem of distribution shift, i.e., the model might not know how to behave in 

unseen situations. 

 

2.6.2 Reinforcement learning 

 

Reinforcement learning [24] is an approach where the system aims to receive the maximum 

reward by acting in an environment. It can perform better than imitation learning in diverse 

driving situations, however, it is less data efficient and more challenging to use in the real world. 

In contrast to Imitation learning, the agent responsible for driving is not told how to reach the 

destination, rather it is given instructions on possible commands such as steer left/right, 

accelerate, break, and using these instructions it receives “feedback” in the form of a reward 

function. This gives positive value if the vehicle reaches its destination or driving correctly, and 

negative value if it’s driving incorrectly by crashing or not following the road rules. 

 

2.7 Challenges in autonomous driving 
 

There are many challenges current autonomous systems face [2], some of them being: 

● Safety: Current technology must be tested in detail before being put into commercial 

use. The World Health Organization states that vehicle accidents are one of the leading 

causes of human death [25]. As the goal of autonomous vehicles is to reduce this, they 

need to be able to make little to no mistakes during driving. 

● Technical barriers: modern technology for autonomous driving has yet to be developed 

enough to be able to perform in all kinds of weather, and situations. Therefore, it is 

necessary that more research and development is made to create reliable sensors and 

computers to be able to accommodate different scenarios that autonomous vehicles must 

learn to react to properly. 

Tackling these issues is very important. To develop these methods, however, most researchers 

do not have access to a large-scale vehicle, or no financial capacity to perform it. Thus, the 

growing need to scale down the vehicles for testing has arisen.  
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2.8 Small-scale car platforms 
 

 
Figure 11: A small scale car. Source: TU Berlin 

Research shows [26][27] that small-scale vehicles have the potential to create a low-cost, easy 

to integrate solution that will further the area of autonomous vehicle research. These platforms 

are designed to mimic commercial AVs (Figure 11): 

● Equipped with a sensor suite necessary for AVs (lidar, camera...) 

● On-Board Computer (OBC) to perform necessary calculations and processes. 

● Chassis to have an appearance close to a real AV and to house all components. 

After each platform is designed, experimentation is done to assess the viability of such a 

platform for the task they were designed to do (which is usually one or more areas within the 

broader field of autonomous-driving research). 

Object detection proved to be robust and scalable on a small-scale AV. Research [27] shows 

that the results achieved are acceptable enough, with some small issues regarding the 

confidence of the detected objects. The self-driving aspects of platforms gave results acceptable 

for academic learning. 

Self-driving aspect testing on the Go-CHART [28] platform confirmed the use of small-scale 

AVs to test human-driver and driver-driver situations in a safe and controlled environment. The 

platform was able to perform lane following and object detection at an acceptable rate. There 

were issues with the inference rate of some configurations due to the hardware limitation but 

ultimately this platform was stated to be able to execute autonomous driving capabilities at a 

level acceptable enough for research. 

Small scale platforms exhibit state-of-the-art localization and mapping research capabilities 

[26]. Through testing Lidar based SLAM methods, results achieved were sufficient for further 

improvements in this area of autonomous vehicle research. 

Small-scale platforms also show acceptable results in specific autonomous driving concepts 

like parking [27]. Testing was done on different areas necessary to perform this specific task 
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(perception, self-driving, localization…) and the results achieved were acceptable to further 

research in autonomous parking. 

Verti Wheelers have shown promising results [29] in driving in rough terrain and allowed for 

development of different control algorithms like open-loop, rule based and end-to-end driving. 

 

 2.10 Other small-scale and robotics platforms 
 

It is important to note that the topic of the thesis is to investigate small-scale car platforms, and 

not just any robotics platform. There are many robotics platforms that can perform autonomous 

driving tasks such as path planning, perception etc. that are not cars but are small scale. For 

example, there are many small-scale autonomous robotic vacuum cleaners, small-scale drones, 

other robotics platforms (such as Robotont) that can perform most (if not all) autonomous 

driving tasks but are fundamentally different both in their kinematics/dynamics, the 

environment they are used in and their visual aspects. As the topic of the thesis is to explore 

small-scale cars, they will not be covered but are worth mentioning. 

In that regard, for a platform to be considered as a small-scale car it should have 4 wheels, 

rectangular-prism shape and have the capabilities to steer, break and accelerate. 

 

2.11 Summary 
 

Research done on many different small-scale platforms have shown that using them is quite 

cost-effective and easy to deploy. These platforms were tested on many different aspects of 

autonomous driving research (self-driving, localization and mapping, parking, object 

detection…) and all achieved quite acceptable results individually. This leads to the question 

of more systematically investigating the capabilities of small-scale car in terms of autonomous 

driving in general, by demonstrating that they are suitable for any kind of autonomous driving 

research, not just specific tasks they are designed to perform. 

 

3 Methodology 
 

This chapter describes the methodology used to investigate the suitability of small-scale 

vehicles for autonomous driving research. The small-scale platform used in experimentation is 

introduced – Donkey Car, as well as a real-life vehicle which will be used as the common 

ground for comparison – the Lexus Car [37]. Next, several experiments are introduced to 

investigate different autonomous driving modules and end-to-end driving. 

 

3.1 Donkey Car 
 

Donkey Car (Figure 12) [30] is an open-source DIY self-driving platform for small-scale cars. 

This platform allows for the custom creation of a self-driving vehicle that can be controlled 

remotely (using a smartphone or a computer) or drive on its own. The focus of this platform is 

fast experimentation and easy contribution.  
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Figure 12: A Donkey Car. Source: Donkey Car 

 

The Donkey Car library supports different SBCs like the Raspberry Pi or Jetson Nano. Its code 

is written in the Python programming language.  

 

As this is a custom-made car there are a lot of different configurations hardware-wise that can 

be made. For this thesis the following configuration is used: 

● Raspberry Pi 4B [31] 

● RoboHAT MM1 robotics controller board [32] 

● Raspberry Pi Camera [33] 

● 1/16th 4WD Electric Power R/C Off-Road Truck [34] 

● RPLidar A1 [35] 

● MPU9250 Inertial Measurement Unit [36] 

 

3.2.1 Donkey Car software architecture 

 

The Donkey Car code is organised into parts (Figure 13) that take various inputs and return 

outputs. A part is a Python class that wraps a functional component of a vehicle (such as sensors, 

actuators, pilots, etc.) Each part is constructed and then added into a vehicle loop.  
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Figure 13: An example Donkey Car script that executes a part 

 

Donkey Car comes with a premade template called manage.py which contains the main code 

to run the car. This code is run in a vehicle loop that will be executed at a rate specified by the 

DRIVE_LOOP_HZ value. Most of these values are stored in myconfig.py and config.py for 

ease of editing. There are also a couple of concepts that are important in the Donkey Car 

template: 

● Memory: this is a hash map of all various vehicle values that are shared by all parts, 

such as inputs, outputs and conditions 

● Inputs: these are memory values passed to the run() method of any part. Every time the 

run() method is called, the vehicle loop will take the input from the memory and pass it 

to the run() method of the part for execution 

● Outputs: these are memory values that will be returned by the run() method. These 

methods are written into the vehicle memory after each loop is executed 

 

3.2 Lexus RX450h 
 

The Lexus RX450h car (Figure 14) is utilised by the Autonomous Driving Lab (ADL) in the 

University of Tartu. It has all necessary sensors that an autonomous vehicle should have for 

research such as: 

• Velodyne VLP-32C and Ouster OS1-128 lidars capable of detecting obstacles 

• NovAtel PwrPak7D GNSS device – for determining the position of the vehicle using 

satellite positioning 

• Allied Vision Mako G-319C cameras – for tracking traffic lights 

• AStuff Spectra computer – for housing the software necessary to perform all driving 

decisions 

• Aptiv ESR 2.5 radar – for determining the distance and speed of vehicles around the car 
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Figure 14: The Lexus Car [37] 

 

This vehicles data will be used as the ground truth for a real-life car during the end-to-end 

driving experiments. 

 

3.4 Experiments 
 

To investigate the suitability of small-scale platforms for autonomous driving research the 

proposed method is to show that these platforms can achieve all the important tasks an 

autonomous vehicle should be able to perform, and that is: 

• Perception 

• Localization 

• Planning and control 

• End-to-end driving 

For each of the following tasks, experiments are devised to both validate and explore the 

viability of the platform capabilities. 

 

3.4.1 Perception experiment 

 

It is stated that the most critical tasks perception needs to be able to do is road segmentation 

and object detection [38]. To confirm perception capabilities of small-scale cars, object 

detection will be evaluated. Using a camera, as it is one of the most commonly used perception 

sensor in autonomous driving, several object detection algorithms will be tested, and compared 

with the performance of the algorithms on real cars. The algorithms evaluated will be: 

• YOLOv4-Tiny  

• MobileNetSSD 

• EfficientNetLite 

Each of these algorithms are lightweight object detection algorithms, and they are run on the 

vehicle in order to measure the inference time and compare it with data from a real vehicle. 

Utilizing Donkey Car’s threaded parts, an object detector is created. All models are loaded 

using pre-trained weights in order to be as objective as possible. 
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For the experiment to be successful, the Donkey Car should be able to successfully load the 

model and detect an object using the camera without impeding the driving loop of the car. 

 

3.4.2 Localization and mapping experiment 

 

In order to validate localization capabilities, we are using a method similar to this paper [39]. 

In most localization experiments, the vehicle is using several algorithms to map and localize 

itself in the environment, and those results are then compared to a ground truth. This is the case 

for the small-scale cars as well. Like the perception experiment – two parts are tested: indoor 

and outdoor to showcase similar points that are being challenged. 

For this experiment two SLAM packages are ran: Hector SLAM [40] which is a particle-filter 

based localization algorithm and Google cartographer which combines grid-based SLAM with 

scan matching  [41].  

For the indoor part of the experiment, the Donkey Car is driven around a section of the 

University of Tartu Delta building (Figure 15). Using the CAD drawing of the building as the 

ground truth a small section of a floor is mapped. 

The first section (Figure 16) is on the 2nd floor near room 2018. This section is to demonstrate 

a small area with a “crossroads” to simulate a more condensed road. 

The second section (Figure 17) is a part of the 3rd floor hallway to simulate long roads and harsh 

90° turning. 

 

 
Figure 15: Experiment setup of the localization experiment.  
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Figure 16: Section one of the localization experiment. Figure 15 corresponds to the space 

between rooms 2018 and 2016 

 
Figure 17: The CAD drawing of the second location that will be mapped indoors 

The second part of the experiment: The outdoor section is Müürivahe street in Tallinn to 

demonstrate the difference of using a small-scale vehicle on a large-scale environment. The 

ground truth in this case is the Google Maps representation of the area (Figure 18). 
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Figure 18: Google map representation of the outdoor experiment 

To evaluate the localization and mapping aspect of the Donkey Car platform, ROS Noetic is 

used. As the hardware of the car is not powerful enough to handle heavy computing, 

communication between the car and a more powerful computer is necessary, hence the use of 

ROS [42]. Its publish and subscribe methods are excellent in evaluating both the sensors and 

the localization methods. 

To compare with a real-life vehicle, we are following a similar system as in this paper [43]. 

Instead of showing the trajectory, the CAD drawing/Google map section is overlayed with the 

created map. 

For a successful experiment, the Donkey Car should be able to map an accurate section of the 

environment without causing the main driving loop to slow down.  

 

3.4.3 Planning and control experiment 

 

To demonstrate planning and control capabilities, the Donkey Car is used in order implement a 

path planning algorithm that follows a similar methodology as the pure pursuit algorithm.  

The pure pursuit algorithm is modified to facilitate small-scale capabilities. In that regard, the 

pipeline created is as follows: 

• the object detection algorithm detects an object (person, car) 

• the detected object is fed into a algorithm that creates a trajectory using Bezier curves 

• the final created trajectory is used by the pure pursuit algorithm to follow the target 

The detection algorithm outputs the detected object as the coordinates of the bottom half of the 

object.  

To generate what the trajectory the vehicle should create to reach the object a Bezier curve is 

constructed (Figure 19) between the points of the location of the car (which is the bottom-

middle of the image) and the detected object. The 3-point Bezier curve is used as it most closely 

relates to what the proposed trajectory of such a path planning algorithm should follow. It is 

calculated as: 

𝑃(𝑡) = 𝑃0𝑡2 + 𝑃12𝑡(1 − 𝑡) + 𝑃2(1 − 𝑡)2, 
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Where t is the number of points the curve should have ranging from 0 to N, P0 is the start point 

of the curve, P1 is the end point and P2 is the control point of the curve. 

This curve is then finally fed to the pure pursuit-like algorithm which follows a different 

methodology in how the next point the vehicle should reach is: the lookahead distance which 

will be defined as LOOKAHEAD_DISTANCE is the nth point in the Bezier curve trajectory 

created in the trajectory creator algorithm. 

 
Figure 19: A 3-point Bezier curve 

Considering the compute heavy requirements of object detection models there are two cases of 

evaluation; one where the whole system is done on the Donkey Car, and one where only the 

pure pursuit portion is run on the Donkey Car, i.e., the object detection and trajectory creation 

are performed on a different device to only test the planning and control portion of the pipeline. 

For the experiment to be successful, the algorithm should be able to infer steering values from 

the pipelines. 

 

3.4.4 End-to-end experiment 

 

As end-to-end architecture combines several common autonomous driving modules, it is an 

excellent way of validating the abilities of an autonomous car.  

To compare performances of two different scaled platforms, data from the real-life car is used 

to create a similar track for a smaller car by scaling down the size. The dataset used for the real-

life car is from WRC Rally Estonia 2020 and 2021 mentioned in this thesis [44]. 

To compare the results achieved with the models, on-policy evaluation is used. Two parameters 

are used to compare the cars: 

- intervention (the number of times the user had to stop the model and adjust the position of the 

car manually) 

- whiteness (the smoothness of the sequence of the predicted action of the model)  

Whiteness is calculated as:  

𝑊 =  
1

𝐷
∑ (

𝛿𝑃𝑖

𝛿𝑡
)2𝐷

𝑖=1 , 

Where D is the size of the dataset, 𝛿𝑃𝑖 is the change in predicted command between each 

timestep, and 𝛿𝑡 is duration of each timestep. This value is 0.02 for both cars. 

The end-to-end models used for the small-scale cars are the standard recommended methods 

from the developers of the platforms to showcase what small-scale car can do in terms of end-

to-end driving. 
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To be as objective as possible as the thesis tackles suitability not end-to-end driving 

development, the recommended guidelines are used from the developers of the Donkey Car 

platform, so the default procedures that the developers state should be followed. 

The Donkey Car recommends driving 10 perfect laps, collecting between 5 and 20k images 

depending on the track length. That data is then cleaned up using the DonkeyUI app, removing 

any collisions, crashes, reverses, or other undesirable actions. The collected data is then used to 

train the Keras Linear model, a Convolutional Neural Network consisting of 5 convolutional 

layers followed by 2 dense layers. 

 

The track used to perform this experiment on is a toy city created in the UT Delta Centre for 

autonomous driving competitions and research. It features a small-scale version of a racing 

track (Figure 20). 

The dataset and model results from a real-life car feature the Lexus Car driving 10km in the 

Estonia rally competition, in both directions [44]. 

 

 
Figure 20: Picture of the track used in the end-to-end experiment. The green line is the path 

the car is trained on 

For the end-to-end experiment to be successful, the vehicle should be able to learn how to drive 

on the track. 
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4 Results and discussion 
 

This chapter showcases the results of the experiments and provides description and conclusions 

on the experiments themselves. 

 

4.1 Perception experiment 
 

The object detection models were used to create a custom Donkey Car part that would detect a 

specific object. This part is then run during the main driving script in order to test out the object 

detection capabilities.  

As it was stated in section 3.4.1 the Donkey Car part was created using OpenCV’s dnn module.  

The vehicle was unable to run the model and drive in loop, causing the car to drive irregularly. 

In order to mitigate these issues changes are needed to create a viable object detection system. 

Utilizing Donkey Car’s threaded system, the part responsible for object detection was then 

changed to allow it to be run in a thread. This meant that it would try to run as fast as the python 

interpreter was able to run it, and not limit it to the vehicles drive loop. This allows for the 

object detection algorithm to detect the model as fast as python’s interpreter would allow and 

allow the vehicle to drive independently of its performance. 

 

Vehicle Model name Average frames per second [fps] 

DonkeyCar 

YoloV4-tiny-416 0.43 

EfficientNetLite 7.22 

MobileNetSSD 1.26 

Real life vehicle 

YoloV5 62.5 

EfficientNet 10.20 

SSD300 46 

Table 1: Object detection model results comparison 

The threaded part was successful at running object detection models on the vehicle. The 

performances of object detection models on small-scale vehicles are heavily influenced by the 

computing hardware of the platform. In comparison to a real-life vehicle the inference time is 

considerably slower than on a real vehicle (Table 1). In terms of autonomous driving, the object 

detection inference time makes it impossible to perform self-driving tasks using object 

detection. It was necessary to make the models threaded otherwise they would seriously impede 

the driving loop of the vehicle. To try to mitigate this the EfficientNet model was run utilizing 

the lite variant, which is made for lower end devices, and using TensorflowLite library the .tflite 

model was loaded which is said to be faster than regular models. This did improve the fps of 

the model up to 7.22 but this was still not enough. While such slow inferences would affect the 

safety of a real-life vehicle, this wouldn’t affect a small-scale car, as it isn’t capable of creating 

heavy damage or accidents on the scale that a real vehicle could. The inference of models can 

potentially be increased by introducing more powerful CPUs. This would potentially increase 

the cost of the vehicle itself, so this can be a potential area of research. 

With all these issues in mind, a conclusion is reached that small-scale vehicles are suitable for 

autonomous driving research in the area of perception, albeit not at a level real-life vehicles are 

able to achieve. 
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4.2 Localization experiment 
 

As the Donkey Car platform does not natively support ROS, a pipeline was created in order to 

enable the use of ROS and driving of the car. ROS has a plethora of libraries capable of 

performing autonomous driving research and sensor communication, hence its use in 

localization experiments. 

During the mapping process, the calculations were done on the Donkey Car in order to confirm 

the assumption that the vehicle will not be able to handle the compute. This assumption was 

correct, hence the change to send data to another device capable of handling the heavier 

compute requirements of SLAM. Firstly, Hector SLAM is used to map the environment as it is 

a lightweight SLAM algorithm sensor-wise, meaning that it only uses the lidar to map, and it 

calculates and provides odometry using lidar data. 

The beginning of the mapping process proved to be difficult, with the vehicle producing very 

inaccurate readings immediately after moving. This was both the problem of the speed of the 

vehicle and the lack of sensors. Slowing down considerably caused the mapping process to run 

much more smoothly. There were still issues with the accuracy, as can be seen in the results of 

the mapping process (Figure 21). This was due to the vehicle odometry not being provided.  

 

 
Figure 21: Hector SLAM results of the localization experiment. (A) Section 1 results, (B) 

Section 1 results overlayed (C) Section 2 results (D) Section 2 results overlayed 

 

To improve upon the capabilities of mapping, more sensors are required, hence the use of 

Google Cartographer. This SLAM algorithm is able to utilize data from both a lidar sensor and 

an IMU unit to more accurately provide odometry. While the DonkeyCar is equipped with an 

MPU9250 sensor capable of providing IMU data, there were issues with the hardware setup of 

the sensor on the Donkey Car I2C. Thus, the need to develop a solution where the car is able to 

read and produce sensor data is needed. Using the ROS package capable of sending IMU data 
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[45], and a python library which enables communication with the IMU [46], a ROS node was 

created capable of  publishing IMU data. This enables the Cartographer to determine the 

orientation of the utilizing sensor data from the MPU’s magnetometer, providing better 

odometry. 

 

 
Figure 22: Cartographer results of localization experiments. (A) Section 1 results (B) Section 

1 results overlayed (C) Section 2 results (D) Section 2 results overlayed 

Utilizing a SLAM package combining multiple sensor data proved to be considerably more 

accurate than single sensor data (Figure 22). 

 

 
Figure 23: Outdoor mapping results 
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Mapping in an outdoor environment was unsuccessful (Figure 23). The scale of the road in 

regard to the car itself, and the noisiness of the environment due to people and other vehicles 

constantly changing prevented any kind of usable mapping. This gives a conclusion that to 

perform any kind of accurate mapping with a small-scale car and the sensor configuration in 

this experiment should be done in a much more controlled environment. Comparing with the 

results achieved in the indoor experiments we can confirm these assumptions as that 

environment was scaled down less as the width of the “road” was more for humans which are 

closer to the scale of the small-scale car. There was also less traffic in the building allowing for 

less noise.  

Overall, the vehicle was able facilitate localization and mapping successfully. There were 

several issues of note during the experiment executions: 

• To have a more accurate map, the vehicle needed to be heavily slowed down, which 

increases the mapping time quite considerably. This goes in line with SLAM on real-

life vehicles, so in that regard they share the main issue. 

• The vehicle has difficulties processing any kind of turning. This is fixed by employing 

better odometry settings. This issue is fixed by either having the SLAM algorithms 

create odometry from laser scan data, or by attaching sensors that can provide this. 

Utilizing Donkey Car’s IMU unit this issue was solved. Both issues have the potential 

to be a research topic into improving the performance of SLAM algorithms in situations 

where there is limited sensor availability such as difficult weather conditions or 

technical issues causing sensors to fail. 

• Having environment that is noisy results in inaccurate map creation. This can be fixed 

by performing experiments in a more controlled environment. 

With these issues in mind, and the results achieved during the experiments, a conclusion is 

reached that small-scale vehicles are suitable for use of autonomous driving research in terms 

of localization and mapping, sharing similar performances and problems real-life vehicles have. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31 

4.3 Planning and control experiment 
 

 
Figure 24: Block diagram of the planning pipeline 

To create a planning pipeline necessary for this experiment, the part used in the perception 

experiment in section 4.1 was repurposed to be used as the object detection portion. This model 

then outputs the location of the object to the trajectory builder which then creates a Bezier curve 

to simulate a trajectory of the vehicle (Figure 24). The most intuitive way of determining the 

Bezier curve points was to use the start position of the curve as the location of the car itself. 

This is set as the bottom-half point of the image. The control point is the centre of the camera, 

i.e. the centre of the image. This way the vehicle is then only able to turn left and right to follow 

a detected obstacle. The created trajectory is then fed into the planning and control section to 

determine the steering angle that is needed to be inferred on the Donkey Car in order to align 

itself with the object. 

Running the planner fully on the Donkey Car was successful. The planner was able to create 

the trajectory and follow several different obstacles. As it was already mentioned in section 4.1, 

the object detection models cause the inference time to be greatly reduced (up to 4 seconds of 

inference time, slowing down the main vehicle loop), making the planner unusable in a driving 

situation. 

 
Figure 25: The faster Planning pipeline block diagram. The blue shaded block is the Donkey 

Car, which takes the input of the camera and sends it to another device, shaded green. 

As planners are generally though to receive trajectory and goal position as an input, a faster 

pipeline scheme is then developed (Figure 25). Utilizing Python’s socket library, 

communication is established between the Donkey Car and the trajectory creator. The client, 

Donkey Car, sends camera images to the host which using object detection and Bezier curve 

generation creates the trajectory and sends it back to the Donkey Car. The Donkey Car is then 

able to conserve resources to perform only the planning portion of the algorithm. 



 

 

32 

 
Figure 26: The faster pure pursuit pipeline in motion. The green line denotes the trajectory 

(bottom middle of the “person”) 

Running the planner partially on the Donkey Car was successful (Figure 26). The planner was 

able to infer steering values much faster than fully performing the pipeline on the vehicle 

(average inference rate was about 0.35s). While this is considerably faster than fully running 

the pipeline on the vehicle it is still not at an acceptable rate of inference. This could potentially 

be sped up even more by utilizing better data exchange sensors. Regardless, the algorithm was 

drastically improved, and it gives further cause into development of planning algorithms on the 

vehicle. 

Based on the positive experiment results, a conclusion is reached regarding small-scale vehicles 

for autonomous driving research in the planning aspect of autonomous driving: small scale-cars 

are suitable for autonomous driving research in the area of planning and control, allowing the 

development and improvement of planning and control algorithms. 
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4.4 End-to-end experiment 
 

Two variations of parameters were utilized in the creation of the models – the driving direction 

(counter-clockwise/left or clockwise/right) and time of day (day/night). These were used in 

order to create a variety of situations the vehicle might be introduced to (Table 2). 

 

Description Number of records 

Left side driving during the day 20611 

Right side driving during the day 21572 

Left side driving during the night 22978 

Right side driving during the night 22690 

Table 2: Data collected for the end-to-end driving experiment 

In order to drive the vehicle, there were two choices: the web controller provided by 

DonkeyCar, or a joystick. Both were attempted, and ultimately the joystick was chosen as it 

was the most intuitive to use, and matched more closely to how a steering wheel would be used 

to drive. 

 
Figure 27: Distribution of data collected for end-to-end experiments 

The data heavily was focused to the steering value of 0.0 (Figure 27), as the track itself has less 

turns then straight lines. As it was stated in the paper [44], data balancing was not necessary, 

hence it won’t be performed. 

All models were successfully trained and ran as can be seen in Table 3.  

 

Model Interventions Whiteness [°/s] 

DonkeyCar v1 18 38.64 

DonkeyCar v2 20 36.76 

Lexus Car (steering angle v1) 18 33.05 

Lexus Car (steering angle v2) 12 31.94 

Table 3: End-to-end experiment results. DonkeyCar v1 model represents the model trained 

only of right-side day data. DonkeyCar v2 model represents the model trained with all data 

collected. Both models were inferred using the .tflite model file generated 
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As we can see from the table above, the Donkey Car was able to match the performance of a 

real-life vehicle quite successfully, having similar number of interventions and even the same 

smoothness.  

The models that were used in experiments are the standard models provided by the developers, 

which would imply that better performing models could be developed and possibly improve 

these results.  

During both data collection and model testing, the vehicle was slowing down as time went on, 

which affected the performance of the models. This meant that the vehicle was able to 

successfully execute end-to-end driving around 50% of the battery life (corresponding to 10 

minutes), as the slowdown of the car speed caused it to stop moving. This also meant that it 

was not possible to create a model that is able to reliably accelerate.  

This is further confirmed by the issue of the locations in which the interventions were most 

frequent. Those were the bottom left, and top right corner of the track seen in Figure 20. These 

sections allowed less room for errors during driving and needed a specific speed of the vehicle 

set while turning, otherwise they would crash or get stuck. Having a better-quality battery, or a 

system which takes into account battery life to modify the speed would potentially solve this 

problem. While this impacts the development of any algorithms that would need long-term 

testing, the platform is able to perform on par with real life vehicles on small-scale tracks. 

 

Based on the experiment results, small-scale cars are suitable for end-to-end autonomous 

driving research, closely matching real-life car models in their performance. 
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5 Conclusions and future work 
 

This chapter explains the conclusions reached from the thesis work and any future work that 

should be performed. 

 

5.1 Conclusions 
 

This thesis tackled the suitability of small-scale vehicles for autonomous driving research. 

Many different aspects, which are important in terms of a small-scale platform’s suitability for 

autonomous-driving research (such as perception, localization, end-to-end), were covered in 

the study, and evaluated through multiple experiments and investigations. 

Regarding perception, the small-scale car is able to utilize sensors to perceive the environment, 

however the hardware prevents the object detection to perform at an acceptable rate. Regarding 

localization and mapping, the small-scale car is able to perform on par to a real-life vehicle. 

Regarding planning and control, the small-scale car is able to facilitate planning and control 

research, albeit on a smaller level than a real car due to hardware. Regarding end-to-end, the 

vehicle is able to match a real-life car with smoothness. 

Overall, the experiment results shown in this thesis confirmed that small-scale vehicles can be 

used for autonomous driving research instead of a large real-life vehicle, producing acceptable 

results in areas evaluated on.  

 

5.2 Future work 
 

The work done in this thesis has revealed several avenues that could be researched further. 

During testing, there were several issues with the hardware of the vehicle platform (primarily 

compute and battery issues) not matching the performance of a real-life vehicle. It is necessary 

to find a hardware configuration that would create an acceptable platform for autonomous 

driving research without sacrificing the cost and the size of the vehicle. 

There is also the question of demonstrating all the autonomous driving capabilities in the same 

environment, thus an experimental environment could be designed for both a large-scale vehicle 

and small-scale vehicle in order to create a more grounded comparison and demonstration of 

the capabilities of small-scale vehicle. This city could then be used as a testing ground for 

research. 
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