
UNIVERSITY OF TARTU

Institute of Technology

Robotics and Computer Engineering Curriculum

Roberts Oskars Komarovskis

Development and Implementation of
ESTCube-2 Star Tracker FPGA Design

Master’s Thesis (30 ECTS)

Supervisor(s): Kristo Allaje, MSc

Tõnis Eenmäe, MSc

Tartu 2024

Abstract:
Development and implementation of ESTCube-2 star tracker FPGA design Attitude de-
termination and control play a critical role in a spacecraft, where one solution for attitude
determination can be star tracking. Star tracker systems can provide high-accuracy attitude
information based on star identification, and such a system is also a part of the ESTCube-2
nanosatellite developed by the Estonian Student Satellite Foundation. One of the primary com-
ponents in the ESTCube-2 star tracker is a field-programmable gate array (FPGA) responsible
for processing the captured images. This thesis aims to develop and implement FPGA system
design and necessary algorithms for star tracking and assess the performance of the obtained
design. Different FPGA design components were made to interface with external devices and
perform different functions related to star tracking.

Keywords:
ESTCube-2, Star Tracker, Attitude Determination, FPGA

CERCS:
T170 Electronics; T320 Space technology

ESTCube-2 tähejälgija FPGA disaini arendus Enamasti on satelliidi asendi määramine ja
kontroll kosmilises ruumis missiooni seisukohast kriitiline. Asendi määramiseks kasutatakse
laialdaselt tähtede teadaolevaid koordinaate taevasfääril ning juba tuvastatud tähtede abil on
võimalik asendikontrolli algoritmidel satelliiti tähtede suhtes nõutud asendis hoida. Tähejälgimis-
süsteemid suudavad võrreldes enamike muude asendi määramise meetoditega anda väga suure
täpsusega asendiinfot ning selline süsteem on loodud ka Eesti Tudengisatelliidi Sihtasutuse poolt
välja töötatud nanosatelliidi ESTCube-2 jaoks. ESTCube-2 tähejälgimissüsteemi üks peamisi
komponente on programmeeritav loogikamassiiv (ik. field-programmable gate array) (FPGA),
mille ülesandeks on tähejälgimiskaamera sensoriga jäädvustatud piltide töötlemine. Käesoleva
lõputöö eesmärk on välja töötada ja implementeerida FPGA disain, tähtede jälgimiseks vajalikud
algoritmid ning hinnata saadud disaini toimivust. Töö käigus loodi erinevad FPGA disainikom-
ponendid, mille abil liidestutakse välisseadmetega ja täidetakse erinevaid tähtede tuvastamisega
seotud funktsioone.

Märksõnad:
ESTCube-2, tähejälgija, kosmoseaparaadi asendikontroll, FPGA

CERCS:
T170 Elektroonika; T320 Kosmosetehnoloogia

2

Contents

Acronyms and Abbreviations 8

1 Introduction 9

2 Star Tracking 10
2.1 History of Star Trackers . 10
2.2 Principles of Star Tracking . 11
2.3 Star Detection . 13

3 Prior Work 15

4 Star Tracker Electronics 16

5 Methodology 18

6 Implementation of Peripheral and Controller Layer 20
6.1 Peripheral Interface . 21

6.1.1 UART Peripheral Layer Implementation 22
6.1.2 Image Sensor Controller Layer Implementation 23
6.1.3 SDRAM Peripheral . 24

7 Implementation of FPGA Internal Components 27
7.1 Implementation of Command Center Component 27

7.1.1 Implementation of Test Image Write and Read Commands 29
7.1.2 Implementation of Test image Centroid Detection and Transfer Commands 30
7.1.3 Implementation of CMOS Sensor Image Capture, Storage, and Centroid

Detection Command . 30
7.1.4 Implementation of CMOS Sensor Image Read-Out Command 32

7.2 Centroid Detection in Images . 33
7.2.1 Star-Line Element Storage . 34
7.2.2 Calculation of XCenter and Ycenter . 36
7.2.3 Processing of Intermediate Star Elements 37
7.2.4 Star Element Release and Centroid Storage 39

8 Results 40
8.1 Consumption of FPGA resources . 40
8.2 Performance of the Commnad Center Component 40
8.3 Centroid Detection Performance . 42
8.4 Performance of Adaptive Thresholding Method 47

9 Conclusion 51

3

References 54

Appendix 55

I Flow Charts 55

II Licence 56

4

List of Figures

1 Simplified flow chart of a typical star tracker system operations. 12
2 Interface diagram of the FPGA and other devices present on the ESTCube-2 star

tracker system. 16
3 Image of the final ESTCube-2 star tracker PCB top side where the primary

components are pointed out. 17
4 Flowchart visualizing the adopted workflow for creating different FPGA compo-

nents . 18
5 Block diagram of the proposed peripheral layer of ESTCube-2 star tracker

FPGA. Arrows only represent the direction of data flow. Control signals are not
visualized in this diagram . 21

6 Configuration of UART interface in ESTCube-2 star tracker FPGA. The baud
rate is set to 1 000 000 symbols/s . 22

7 Timing diagram of the MT9P031I12STM-DP image senor visualizing the rela-
tionship between different image sensor signals [1] 23

8 Memory architecture of a typical SDRAM device, which resembles a set of
three-dimensional matrices. 24

9 Simplified SDRAM controller state machine responsible for managing and
transitioning between different SDRAM activities 25

10 Simplified block diagram of the command center component containing con-
nections with other core components. Red dashed line indicates area where
multiplexing takes place to share the image controller component 27

11 Visualization of SDRAM bank 0 memory allocation for CMOS sensor image
and the test image . 31

12 Data composite consisting of information describing a set of nearby pixels
detected in a row. This data composite is 72 bits long and is stored in FIFO-A,
where it will wait for further processing . 34

13 Example image of a star with labeled pixels. The label indicates the order in
which pixels would be accessed in the image. The table describes what actions
are taken during pixel access. 35

14 Block diagram of the hardware component responsible for replicating equations 4
and 6. 36

15 Star element data composite stored inside the FIFO-B memory component. This
composite is 112 bits wide and consists of 8 different values characterizing a
potential star. 37

16 Test images sent to and received from the FPGA. 256x256 pixel image padded
with black pixels to obtain a 1000× 1500 pixel test image. 40

17 1944× 2952-pixel CMOS sensor image captured with 0x04 command and then
transferred through UART with 0x05 command. 41

5

18 Simplified diagram of the setup used for verify the performance of the centroid
detection algorithm based on a predefined 10× 20 pixel image 42

19 Manually generated test image containing star imitations. This image was used
to verify that the output of centroid detection component in simulation and FPGA
match the expected values . 43

20 Original image of the night sky with stars obtained by ESTCube-2 star tracker
CMOS sensor and optics similar to the one used in satellite flight hardware. The
red border indicates the 1000x1500 pixel area being cropped for further usage
with the centroid detection component. 44

21 Image of the night sky. The red circles mark the stars detected by the designed
FPGA centroid detection component; the blue circles mark the stars detected
by the "DAOStarFinder" function in Python. The threshold for the centroid
detection was set to 346 ADU. 45

22 Image of the night sky, where stars detected by the "DAOStarFinder" function
and the centroid detection component are within 10 pixels of each other and are
marked with blue and red circles, respectively. The threshold for the centroid
detection was set to 346 ADU. 46

23 Zoomed-in area that is pointed out with a red rectangle in Figure 22., where mul-
tiple stars, found by both the "DAOStarFinder" function and centroid detection
component, overlap. 46

24 Block diagram of the test setup used to evaluate Ayal’s solution to the integer
division and square-root functions. 47

25 Inconsistent results between simulation and FPGA tests when performing integer
division and square root functions. The division denominator and the square root
input is incremented from 1 to 255. The figure does not visualize all results. . . 48

26 Consistent results between simulation and FPGA tests when performing integer
division and square root functions when introducing a five-cycle delay. The
division denominator and the square root input is incremented from 1 to 255.
Figures do not visualize all results. 49

27 Flow chart of the process described in the section 7.2.3. NSE corresponds to
”New Star Element”, and CSE corresponds to ”Current Star Element” available
at the output of FIFO-B memory component 55

6

List of Tables

1 Configuration of the FIFO IP component used in the UART peripheral 23
2 SDRAM peripheral layer FIFO general parameters 26
3 Summary of the commands that the command center can parse and the subse-

quent data that is either received or transmitted 28
4 Table summarizing the centroid positions obtained from the Figure 19 by manual

calculations, the simulation and the FPGA. 43

7

Acronyms and Abbreviations

ADU Analog-to-digital unit
CCD Charged-coupled device
CMOS Complementary metal oxide semiconductor
COTS Commercial off-the-shelf
DEMUX Demultiplexer
FPGA Field-programmable gate array
FIFO First-in, first-out
FP Floating-point
FV Frame valid
ID Identification
IMU Inertial measurement unit
IP Intellectual property
LSB Least significant bit
LV Line valid
MCU Microcontroller
MSB Most significant bit
MUX Multiplexer
NASA National Aeronautics and Space Administration
PCB Printed circuit board
PLL Phase-locked loop
RAM Random access memory
SDRAM Synchronous dynamic random-access memory
SPI Serial peripheral interface
UART Universal asynchronous receive transmit
USB Universal serial bus
VHDL Very high-speed integrated circuit hardware description language

8

1 Introduction

In recent years, the popularity of smaller spacecraft has increased dramatically, and the
source for this increase in popularity may be related to numerous reasons. For example, a
small spacecraft’s lead time and expenses can be considerably smaller.[2] Lower development
costs allow smaller research groups like universities to develop their own spacecraft. Teams
developing these types of spacecraft are more permissive to using commercial-of-the-shelf
(COTS) components. [3] These devices may have lower reliability in harsh space environments
but allow much higher ambitions as the most recent technology has been placed at arm’s length.

The Estonian Student Satellite Foundation is a small research group that successfully launched
the ESTCube-1 nanosatellite to space in 2013. Ten years later, in October of 2023, ESTCube-2
was launched, but unfortunately, there was some malfunction during the launch, and the satellite
was regrettably lost. Regardless of this tragic event, the thesis was continued because the Estonian
Student Satellite Foundation continues to plan the following satellite missions, including the
possibility of manufacturing another ESTCube-2 satellite, where the results of this thesis might
become relevant and valuable. ESTCube-2 was a 10 × 10 × 30 centimeter nanosatellite that
follows the CubeSat standard, where a unit corresponds to specific dimensions of 10× 10× 10

centimeters. [4] Numerous systems on the satellite are responsible for different tasks required
for maintaining the satellite operation, like sending data to the ground stations, determining and
controlling the attitude, and others. Attitude determination/control is one of the most critical
tasks as it allows one to maintain or change the satellite’s attitude depending on the requirements
present at that specific moment.

One of the ways ESTCube-2 determines its attitude is with a star tracker system. Star trackers
determine the satellite’s attitude by taking an image of the stars. Considering that the star
positions in the sky are static, and if the star tracker can effectively determine which stars it is
observing, it can determine the spacecraft’s attitude relative to the stars. However, this memory
and computationally heavy task requires significant hardware and software effort. One of the
central components of the ESTCube-2 star tracker system is the field-programmable gate array
(FPGA), which is responsible for image data processing and manipulations. This thesis focuses
on developing algorithms necessary for the final attitude acquisition and a backbone structure
of the FPGA that allows it to interface with other devices present in the system and to test the
developed algorithms. The system’s hardware has already been finalized and will not be covered
in detail. The main goals of this thesis are:

• Continue the implementation of the ESTCube-2 star tracker system based on previous
ESTCube-2 member efforts

• Develop an efficient interface between the FPGA, other on-board devices, and the user

• Implement ESTCube-2 star tracker FPGA design that is capable of performing star tracking
algorithms

• Test the implemented FPGA components

9

2 Star Tracking

This section describes the history, main principles, core algorithms, advantages, and disad-
vantages of star tracking systems in space, and it aims to lay a solid theoretical foundation for
further practical development of the ESTCube-2 star tracker FPGA design.

2.1 History of Star Trackers

People used star tracking long before any spacecraft was ever made. The origins could be
found with the sailors who used observable stars to navigate through the seas, where other visual
clues are scarce. [5]

As space exploration reached new depths in the late sixties of the previous century, so did the
star tracker systems and their usage. Star-tracking origins in space exploration could date back
to the National Aeronautics and Space Administration (NASA) Gemini VII mission, where an
on-board operator used a hand-held photometer to observe and track a star as it passes beyond the
Earth’s horizon. The data was recorded for post-flight analysis to update the existing atmospheric
model for horizon-based measurement systems. [6] Gemini missions gave critical insight into
real-time operation troubleshooting, experience in advanced space operations, and evaluation of
existing navigation systems. [7] [8]

In NASA Apollo missions, attitude determination was an important task to overcome, con-
sidering the new and poorly studied lunar environment and the dire consequences of inaccurate
measurements. Gyroscopes were commonly used to determine the attitude, but they tend to drift,
and uncertainties may arise due to changing gravitational forces. Thus, they require periodic
calibrating. Apollo missions used an optical system consisting of a telescope and a variation of a
sextant to adjust the spacecraft’s inertial measurement unit (IMU) or change the IMU reference
point. The operator could insert a program into the computer to align the optics to a specific
star for drift corrections. If IMU had drifted, there was a misalignment in the sextant, and the
operator could manually adjust the error. Sextant could also be used to change the reference point
of the IMU by aligning an image of one or two known stars with the Earth’s or Moon’s horizon
and measuring the angle used as an input for the guidance computer. Though ground-based
and inertial measurements were at the heart of the navigation system, observation and usage of
celestial bodies still played a considerable role. [8, 9, 10]

The methods described in the previous paragraphs depend on the operator’s input and would
be considered the first generation of star trackers, where the star had to be manually locked
and required some additional attitude instrument. Different factors directed the advancement
of space technology in the second half of the 20th century; for example, the first creation of
complementary metal-oxide semiconductor (CMOS) transistors and integrated circuits, which,
following Moore’s law, increased their possible density twice every two years or so. The
advancement could also be related to increased space and military efforts related to the ”Cold
War”.[11]

10

Before the first autonomous star tracker was developed, there were significant leaps in optics,
material, sensor technology, and analog and digital electronics. [12] The first fully autonomous
star tracker (at the time named an advanced stellar compass) was on board the Danish satellite
Ørsted that was successfully launched into space in 1999[12]. This advanced stellar compass
mainly consisted of a Sony CDX039AL charge-coupled-device (CCD) camera and an Intel
80486 processor. Compared to its predecessor, this system could do much more than output
the coordinates of specific stars - it had a storage of a star catalog, and it was capable of fully
acquiring the attitude of the spacecraft and outputting the information as quaternions or stellar
coordinates. [13, 14]

Since the dusk of the 20th century, autonomous star trackers have become a standard practice
in space missions. Generally, the core principles of these systems have remained the same, but
technological advancements have continued, allowing for more efficient and compact systems.

2.2 Principles of Star Tracking

A typical star tracker system consists of a camera, a star catalog, and a processing unit,
which can determine star coordinates in the acquired image and apply pattern matching between
these coordinates and those embedded in the star catalog. This results in some form of attitude
information relative to the satellite. Several parameters describe the operation of the star tracker
in terms of usage in a spacecraft - accuracy, size, weight, power consumption, radiation resistance,
lifetime, etc. In 2001, a typical star tracker weighed 1-7 kg, consumed 5-15 W, had an update
rate of 0.5-10 Hz, and had accuracy in several arcseconds. [15]. Twenty years later, commercial
solutions can have a 4-10 Hz update rate, generally 10-arcsecond accuracy, 2-3.2 W power
consumption, a weight of 350-760 g, and a lifetime of over a decade. [16, 17, 18] Even if the
performance has not significantly improved, there are some noticeable improvements regarding
the star tracker system size, weight, and power consumption - highly favorable areas for smaller
missions such as nanosatellites.

The driving factor in using a star tracker in a spacecraft attitude determination system is their
high accuracy – a matter of arcseconds relative to other methods that provide accuracies in the
range of arcminutes. [11] The angular resolution of an image sensor is directly related to the
number of pixels of the camera. This relation is described with the equation 1, where ζ is the
angular resolution of one pixel, θ is the half opening angle of the lens, and N is the number of
pixels across the image sensor. [11]

ζ =
2θ

N
(1)

When applying typical star tracker camera parameters to the equation, it becomes apparent that
the angular resolution of a pixel is higher than the advertised star tracker accuracies. Probabilistic
methods or the use of hyperacuity can help achieve these advertised sub-pixel accuracies in a star
tracker. [11] In general, the accuracy of a star tracker is a function of field-of-view, the routine
that battles the sampling theorem, image sensor resolution, and its other characteristics, such as
susceptibility to noise.

11

Generally, there are two modes of operation for star tracking systems – ”lost in space” and
”tracking”. The system is lost in space when it has no prior attitude information and must obtain
the initial attitude. This is the most computationally intensive state, as the full image must be
digitized and processed, and it may take several seconds to obtain the initial attitude. When the
attitude is obtained from the ”lost in space”, the system can switch to tracking mode, where
different predictions can be made. This is more efficient because the system can predict the
possible area where stars will be in the following image, which allows for avoiding digitizing and
processing the whole image. [15, 19] Different algorithms and data manipulations are required
to obtain the final outputs at different steps, as seen in Figure 1.

Figure 1. Simplified flow chart of a typical star tracker system operations.

12

2.3 Star Detection

Being capable of detecting stars is one of the core abilities of the star tracker system. When
light from a star reaches the image sensor, it illuminates a pixel or a set of pixels, depending on
the star’s magnitude and the sensor’s resolution and optics. This set of pixels visualizing the star
is commonly known as a blob. As there is more than one pixel in the blob, its center or centroid,
which represents the star’s position in the image plane, is initially unknown. An algorithmic
procedure must be introduced to obtain this centroid.

In the star detection process, there are also sources of noise that may affect the image quality
and the centroids’ determination. Generally, there are five types of noise when detecting stars
- photon noise, readout noise, dark current noise, electronic noise, and mechanical noise. [20]
These types of noise in the image may appear as illuminated pixels even in the absence of light,
random variations in the signal, distorted images, and others. Light from other celestial objects,
such as the Earth or the Sun, can affect the quality of the image in terms of star tracking and may
render the star tracker incapable of performing its task.

Stars could be considered noise if not present in the stored star catalog because they do not
provide meaningful information and may cause a faulty star identification process. Thresholding
is a common preprocessing method in star tracker image acquisition, where pixel intensity
threshold value is estimated based on probabilistic or empirical methods. Pixel intensity values
below this threshold are considered not to originate from a star’s light. When targeting certain
magnitude stars, the blob size or intensity can also be used as a factor when filtering out unwanted
stars. Empirical methods can obtain the best working value, though the light conditions might
change once the satellite is in orbit. Statistical analysis can be performed to obtain this value
based on the mean and standard deviations of the pixel intensities in the image. The statistical
method of obtaining the threshold value was performed in prior work on the ESTCube-2 star
tracker system. [21] The standard deviation of the image pixel intensity mean was set as
the primary factor for differentiating between stars and image background noise. Equation 3
represents the standard deviation calculation, where N is the number of pixels, I is the intensity
of a single pixel, and I[mean] is the mean value for pixel intensities. The illumination source is
likely a star if a pixel’s variation is five times the standard deviation. The probability of noise
level being five standard deviations over the average, if it follows normal distribution, is 0.023%.
[21]

Imean =

N∑
i=1

I

N
(2)

Sn =

√√√√ 1

N

N∑
i=1

(I − Imean)2 (3)

Weighted sums of the blob pixel intensities can be used to find the center of the intensity.
This method can be applied in both vertical and horizontal directions. The blob can occupy
multiple rows, and the center of intensity for each row can be found with equation 4, where the n

13

is the number of pixels in the ongoing row of the blob, I is the intensity of the pixel, and Xstart

is the first detected pixel in the row of a blob.[22]

Xcenter =

∑w
n=1(n · I)∑w

n=1 I
+Xstart (4)

A blob’s final X position can be determined by summing all previously obtained blob centers
of individual rows and dividing by the total number of rows in a blob as seen in equation 5. [22]

Xblob =

∑w
n=1Xcenter

number of rows
(5)

The final Y position of a blob can be determined from the Equation 6, where the Irow is the
integrated intensity of the row, Y is the vertical position of the blob, and Ystart is the vertical
starting point of the blob.[22]

Yblob =

∑
(Irow · Y)∑

Irow
+ Ystart (6)

There might be cases where a pixel in the middle of a blob is darker than the required intensity
level. For example, these cases might be induced by damaged or "dead" sensor pixels. If not
addressed, these cases might falsely stop the star detection process, even if the following pixels
have brightness above the required threshold and are a part of the same star. For these situations,
an additional ”ghosting” method can be introduced, which allows a limited amount of dark pixels
without stopping the detection process. If this ghosting level is not exceeded and a new bright
enough pixel appears, the new and previous dark pixels are considered part of the same blob.
[22]

14

3 Prior Work

Before explaining the author’s contribution in more detail, it is essential to mention and
describe the effort of other ETCube-2 members related to the ESTCube-2 star tracker system.
Though there are many contributions to different extents and from various parties, this section
will focus on published work that is most relevant to the topic of this thesis.

The first contribution to mention is the bachelor’s thesis written by Jürgen Laks, where the
scope of the thesis covered the development of the ESTCube-2 star tracker system prototype
and its initial tests. [23] Besides the hardware development, Laks was able to verify that the
FPGA is operational and can be programmed and that the FPGA can obtain CMOS image sensor
data. However, only 16× 16-pixel image snippets were obtained because full image acquisition
required large FPGA development efforts outside this thesis’s scope. [23] Further discussion on
hardware specifics primarily set by this thesis is covered in section 4.

Another important contribution to mention is a bachelor’s thesis written by Andreas Ragen
Ayal [21]. This work was mainly targeted toward implementing an adaptive thresholding method
for star detection that is more robust against differentiating stars from the background noise.
Ayal also worked on improving the star detection method proposed by Lindh [22] that involves
the proposed thresholding method but was unable to achieve a synthesizable result. This thesis
will explore integrating the Ayals thresholding method into a developed FPGA solution.

The last contribution to mention is Sandra Schumman’s master’s thesis exploring star identi-
fication algorithms. [24] The aim of this thesis was to explore different algorithms that would
be the most optimal for star detection and matching and determine the expected performance
of the ESTCube-2 star tracker under various conditions. This work was highly theoretical
and simulation-based but provided solid information about the parameters and conditions the
ESTCube-2 satellite and its star tracker system will experience.

15

4 Star Tracker Electronics

ESTCube-2 star tracker system hardware was already developed before the writing of this
thesis. The initial prototype of the ESTCube-2 star tracker electronics was conceptualized and
partially developed in 2015, consisting of selecting the CMOS image sensor, the creation of its
initial electronics, optics, and mechanical hardware, and the decision to use the combination
of FPGA, microcontroller (MCU) and external random access memory (RAM). The prototype
consisting of all the components was made in 2019 and is documented in the thesis written by
Jürgen Laks. [23]

The hardware of the ESTCube-2 star tracker can be summarised in three domains - image
acquisition and processing, satellite interface, and power management. Of these three, image
acquisition and processing are of the highest interest in terms of this thesis. This domain
consists of an MT9P031 CMOS image sensor [1], Cyclone IV EP4CE22E22C6 FPGA [25],
IS42S16320D-7TLI synchronous dynamic random access memory (SDRAM) device [26],
MT25QL512ABB1EW9-0SIT flash memory device [27]. These are the components that are
directly involved in attitude determination.

The FPGA is connected to all the previously listed devices, and a simple interface diagram is
visualized in Figure 2. To ensure data transfer between these devices, the FPGA must be capable
of using different communication protocols and interfaces with these devices. These commu-
nication protocols and interfaces include universal-asynchronous-receive-transmit (UART) for
communication with the MCU, serial peripheral interface (SPI) for communication with the flash
memory and again with the MCU, and parallel data transfer for communicating with the image
sensor and the SDRAM.

Figure 2. Interface diagram of the FPGA and other devices present on the ESTCube-2 star
tracker system.

16

The prototype operated well, though additional changes and improvements were made once
the design was migrated onto an engineering model - a model resembling the final flight model.
The author of this thesis contributed to the finalization of the schematics and also designed
the final printed circuit board (PCB) design for the engineering and flight model, where the
final design of the ESTCube-2 star tracker electronics can be seen in figure 3, and the critical
components are pointed out. However, a detailed description of the hardware in the following
sections is avoided as it is outside this thesis’s scope.

Figure 3. Image of the final ESTCube-2 star tracker PCB top side where the primary components
are pointed out.

17

5 Methodology

The practical part of this thesis focuses on developing and implementing the ESTCube-2
star tracker FPGA internal hardware design and behavior capable of interfacing with external
devices and detecting star coordinates in an obtained image. In this work, the behavior of
the internal FPGA elements was programmed using the Very High-Speed Integrated Circuit
Hardware Description Language (VHDL).

A development workflow was adopted and followed with some exceptions to ensure the
proper performance of individual or multi-component designs. This workflow consists of multiple
development steps and encourages testing and backtracking when results in different stages do
not meet expectations. The states and transitions of this procedure are visualized in figure 4.
The author attempted to write additional test components with pre-defined behavior to achieve
similar conditions in the simulation and on the FPGA. The only inputs for the test components
were clock signals. The designed components were placed inside the test component, and the
output as UART data or individual signals were recorded.

Figure 4. Flowchart visualizing the adopted workflow for creating different FPGA components

Based on the workflow, the first task is to define the requirements, behavior, and inputs/outputs
of the to-be-designed component, followed by writing equivalent VHDL code. If the VHDL
code cannot be compiled, it must be modified accordingly until it is successful. After the
component has been successfully compiled, its internal and boundary signals can be evaluated
in more detail. In this stage, more critical issues may arise; for example, some behavior or
signal definition has been based on a false assumption, or some signals do not have correct
timing characteristics, leading to their re-definition. If the simulation of a component behaves
as expected in the simulation, an attempt is made to synthesize hardware analog to it and fit
in on the FPGA. The synthesizer makes assumptions based on the provided VHDL code and
infers hardware elements and their function. The synthesizer may falsely infer hardware from
the provided VHDL code; for example, logic elements are used for data storage instead of using

18

internal RAM. It is also possible to define some elements that can be simulated but can’t be
synthesized entirely; for example, a flip-flop with two clock inputs. These sorts of situations
then have to be corrected. After successful synthesis, timing characteristics must be carefully
monitored to avoid any unpredicted violations due to signal lagging in complementary logic
leading to hold/setup time violations. Some exceptions can be made if the timing violation is
expected. Lastly, the component must be programmed to the FPGA, and the outputs must be
measured. In an ideal case, the outputs match, indicating that the component design is correct
and can be used in further development. Otherwise, the underlying reason for the inconsistency
must be identified, and corrections must be made in the VHDL code or the predicted component
design.

The usage of the described workflow may be unreasonable when directly working with
signals to or from external devices. In this case, the testbench should also contain the behavior of
the external device, which can significantly increase the complexity and time required to design
the testbench and the simulation itself. Some components may require many output signals that
are hard to verify in real life due to limited hardware probing points.

For maintaining the FPGA project, configuring the FPGA pinout, configuring timing con-
straints, performing compilation, synthesis, and fitting, viewing the inferred hardware and state
machines, timing analysis, and obtaining the general information about the compiled design
Quartus Prime 19.1 Lite Edition by Intel 1 was used. The Quartus Prime 19.1 Lite Edition by
Intel provides access to Intel’s multiple basic intellectual properties (IP) hardware units/cores. It
must be noted that this is a free-access software that only provides the functionality and resources,
including the IPs, in a limited evaluation mode. In the context of this thesis, IP is considered
a standalone hardware unit that can be imported into an existing FPGA design and provides a
specific hardware behavior. It is considered a property where the rights are reserved to its owner.

ModelSim-Intel® FPGA Edition Starter edition2 was used to compile different components,
combinations of components, and test benches and then view subsequent waveforms of signals
provided by the resulting simulation.

The FPGA was programmed through the USB Blaster V2 Programmer/Debugger tool. A
UART-to-USB hardware module designed by ESTCube members was used with HTerm software
3 to give commands and transfer data to and from the FPGA. a Rigol DS1202 oscilloscope
was used to view and verify the outputs of the FPGA. The author also wrote small Python
programming language scripts to perform minor utility tasks such as converting images into
binary files, displaying images, and translating raw floating-point numbers into readable form.
DAOStarFinder4 function from the photutils.detection module in Python was used to obtain a
reference for the centroid detection component. The PCB designed by the author (Figure 3.) was
used to design and verify different FPGA components.

1https://www.intel.com/content/www/us/en/software-kit/660907/intel-quartus-prime-lite-edition-design-
software-version-20-1-1-for-windows.html

2https://www.intel.com/content/www/us/en/software-kit/750368/modelsim-intel-fpgas-standard-edition-
software-version-18-1.html

3https://www.der-hammer.info/pages/terminal.html
4https://photutils.readthedocs.io/en/stable/api/photutils.detection.DAOStarFinder.html

19

6 Implementation of Peripheral and Controller Layer

The ESTCube-2 star tracker FPGA is connected to various external devices. Data transfer
between these devices and synchronization with the other FPGA processes must be managed
and maintained. As the FPGA does not have predefined hardware functionality, it has to
be implemented by the author. The final design is expected to contain components, clock
signals, data widths, and other conditions that may cause a complex solution if not approached
systematically. This section discusses the controller and peripheral layers, which aim to reduce
the complexity of the interface between internal FPGA components and external devices.

Each external device has a component that is considered to be on the peripheral layer. They
reside on the edge between the FPGA and the environment, have a direct connection with the pins
of the FPGA, and pass signals from the controller layer component to them. The peripheral layer
component consists of data buffers, data type conversions, and controller layer components. The
image sensor is an exception, having only a controller component, because data is managed in
real-time, and there is no need for additional data buffer. The image sensor controller component
is also relatively simple, and there is no need for further abstraction.

The controller layer is less abstract than the peripheral layer. It defines the precise signal
changes and timing for generating the proper hardware behavior for interacting with the external
device. This layer also has device-specific knowledge, such as device operational codes or
routines unique to the device. Generally, the internal FPGA components should not directly
interface with this controller component as it would introduce additional constraints to the
internal components.

Figure 5. visualizes the proposed structure of the ESTCube-2 star tracker FPGA. The author
must note that SPI and Flash peripherals (indicated with dashed lines in the figure) were not
implemented; however, the groundwork was laid, and the same approach could be maintained to
further develop these components.

20

Figure 5. Block diagram of the proposed peripheral layer of ESTCube-2 star tracker FPGA.
Arrows only represent the direction of data flow. Control signals are not visualized in this
diagram

6.1 Peripheral Interface

The ESTCube-2 star tracker FPGA communicates with different external devices that run on
different clocks and have different communication protocols, data lengths, and other peripheral-
specific parameters. Different clock domains are asynchronous, and to transfer data, some form
of synchronization has to be implemented. Peripherals may have internal procedures and states
that may not allow continuous interface with them, leading to lags in data communication or
even data loss. Thus, a data buffer interface was determined to be used on the peripheral bound-
aries, allowing different clock domains to be used and simplifying the overall communication.
This design choice leads to higher usage of available resources but allows more efficient and
manageable design for other components.

Initially, there was an attempt for a universal, easy-to-use interface component to manage data
between different peripherals, regardless of whether the peripherals run on the same or different

21

clocks. This interface component could operate at a lower frequency, though it did not properly
function with higher-frequency peripherals such as SDRAM. Thus, the idea was eventually
abandoned, and the author moved to Intel’s existing first-in-first-out (FIFO) IP. [28] This IP
proved to have the required functionalities; it was easily configurable and, most importantly,
supported two different clocks.

6.1.1 UART Peripheral Layer Implementation

UART hardware interface is a common form of serial data communication between devices
due to its simplicity. The ESTCube-2 star tracker uses UART to transfer data and commands
between the MCU and the FPGA. UART is a configurable hardware communication protocol
where both sides must employ the same configuration for successful communication. [29] This
configuration includes the following:

• Length of data - 5 to 9 bits

• Data transmission order - most significant bit (MSB) or least significant bit (LSB) first

• Baud rate

• Parity check

• Amount of stop bits - 1 or 2 bits

UART peripheral layer component, which consists of a transmitter, receiver, and two FIFO
buffers for each data direction, was made. It was decided that the UART would be created as
simply as possible, as it does not play a crucial role in the star tracker operation. The UART
packet and configuration used in the FPGA can be seen in figure 6. The configuration options
can also be modified through the configuration file, which defines constants used in the design.
Modifiable options include the baud rate, data transmission order, data length, and amount of
stop bits. The parity check option was not implemented.

Figure 6. Configuration of UART interface in ESTCube-2 star tracker FPGA. The baud rate is
set to 1 000 000 symbols/s

Two identical FIFOs transfer the data between the UART peripheral and the internal FPGA
components. These FIFOs are synchronous and in the show-ahead mode, meaning that the same
clock drives them and that the data must be acknowledged and not requested. The configuration
of the FIFO can be seen in Table 1.

22

Table 1. Configuration of the FIFO IP component used in the UART peripheral

Side Frequency (MHz) Data width (bits) Words Mode

Input
100 8 64

Synchronous,
show-aheadOutput

6.1.2 Image Sensor Controller Layer Implementation

The controller layer component was made to acquire an image from the MT9P031I12STM-
DP image sensor. [1] The image streaming is synchronized with a 27 MHz clock signal generated
by the sensor. This clock signal is also supplied to the FPGA to synchronize the data capture
properly. In addition to the clock and data lines, the image sensor provides line-valid (LV) and
frame-valid (FV) signals indicating when the streamed image’s pixel data contains valid pixel
data. Figure 7 visualizes the timing diagram of the FV signal, LV signal, Clock, and 12-bit pixel
data relationship.

Figure 7. Timing diagram of the MT9P031I12STM-DP image senor visualizing the relationship
between different image sensor signals [1]

The CMOS image sensor continuously streams out 1944× 2592 pixel images row-by-row.;
no trigger signal is required from the FPGA side to initiate the image read-off. When the
image sensor controller receives an image capture signal from internal FPGA components, it
is responsible for detecting the beginning of a new image frame to begin the capture process.
During the image capture, the controller component indicates when the pixel data is valid (detects
when both FV and LV signals have a high logic level). It keeps track of the image column and
row and outputs a signal that indicates when all active image pixels have been processed.

No peripheral layer was designed because the image capture process is relatively simple; as
the CMOS configuration is uploaded by the ESTCube-2 star tracker MCU, the FPGA only reads
the data and has no control over the data streaming process, making additional buffers redundant
and unnecessary.

23

6.1.3 SDRAM Peripheral

One of the more complicated devices in the ESTCube-2 star tracker system is the IS42S16320D-
7TL SDRAM, which allows high-rate parallel data storage and reading. [26] These advantages
also lead to more complex handling procedures from the FPGA point of view. The complexity of
the SDRAM device arises from the precise timing requirements and the various states the device
can and must transition through in order to perform read, write, or some other internal function
of the SDRAM. The purpose of this device in the star tracker system is to store the captured
image, which allows it to process the image after it has been taken or transmit it to other satellite
systems.

The total memory capacity of the IS42S16320D-7TL SDRAM device is 512 mega-bits. The
memory architecture of the device consists of 4 banks, each with 8192 rows and 1024 columns.
Every memory position can store a single 16-bit data point. A single SDRAM bank has a
capacity of 16 megabytes, so it can potentially store two full CMOS sensor images if a single
16-bit memory position stores one full 12-bit pixel and then an additional 4 bits of another pixel,
requiring asymmetrical image storage. In this thesis, the asymmetrical memory storage was
avoided due to its complexity, leading to a solution where only one pixel is stored in one memory
position, utilizing 75% of it. Due to this inefficiency, only one full CMOS sensor image can be
stored in a single SDRAM bank. Different banks can be used to store images, increasing the
number of images that can be stored. A visualization of the SDRAM memory architecture can
be seen in Figure 8.

Figure 8. Memory architecture of a typical SDRAM device, which resembles a set of three-
dimensional matrices.

A controller layer component was made for the SDRAM device, which is responsible for
the power-up routine of the device, issuing commands, precise signal timing, and managing the
data and address lines. The central element of the SDRAM controller component is the state
machine, where the states initiate different SDRAM procedures and keep track of the latency
periods required to perform a procedure. The visualization of this state machine can be seen in

24

Figure 9.
The SDRAM goes to the IDLE state after the powerup routine, which includes a 100 µs wait

period, one precharge procedure, two auto-refresh procedures, and mode programming. From the
IDLE state, the SDRAM controller component can start operating normally. To access a column
of some row, the row must be activated first, which is handled by either ”ACTIVATE WRITE”
or ”ACTIVATE READ” states. Both states perform the same operation but differ in the paths
they can take afterward. When a row has been activated, data reads and writes are performed
through the READ and WRITE states, respectively. When the write or read is requested on a
column residing on a row different from the active row, the active row must be precharged, and
the activation procedure must be issued once again for the new row.

For the IS42S16320D-7TL SDRAM device, a refresh procedure must be issued every 8 µs –
every 800 cycles if the device is clocked with 100 MHz to avoid data corruption. An internal
timer process in the SDRAM controller component keeps track of this period and issues a
”Do Refresh” signal when the timer has ended. Each state of the state machine monitors this
signal, and when it becomes true, the state transitions to the IDLE state. If a row is active, it is
deactivated with a PRECHARGE procedure, and finally, the state can move to the REFRESH
state. REFRESH state issues a command for a refresh procedure, waits for ten clock cycles,
clears the ”Do Refresh” signal, and then transitions back to the IDLE state.

Figure 9. Simplified SDRAM controller state machine responsible for managing and transitioning
between different SDRAM activities

In addition to the SDRAM controller layer component, a peripheral layer component was also
developed to reduce SDRAM access complexity from other FPGA component perspectives. The
peripheral layer comprises three Intel FIFO IPs and an SDRAM controller component described
in the previous paragraphs of this section. Control output signals of these FIFOs, such as ”Empty”
and ”Full”, are the core triggers for state transitions in the state machine visualized in Figure 9.
The general parameters of all three FIFOs can be seen in Table 2.

An FPGA component can store data in the SDRAM using the peripheral layer by assembling
a data composite and setting the FIFO ”Write Request” input signal to a logic high level. Write
data composite is 41-bit long, and it consists of a column address (10 bits), row address (13 bits),
bank address (2 bits), and data to be stored (16 bits). The actual data storage process is handled
by the SDRAM peripheral and controller components that handle the FIFO data based on the

25

SDRAM device accessibility and state.
Reading requires two FIFO components; one FIFO component receives address composite

from some FPGA component, and the other provides data corresponding to the address provided
– address comes in, and data goes out. The read address composite is 24 bits long and contains
the same structure as the beginning of the write FIFO composite – a column address (10 bits), a
row address (13 bits), and a bank address (2 bits). The read data FIFO component just stores
16-bit long data that was read from the SDRAM.

Table 2. SDRAM peripheral layer FIFO general parameters

Write FIFO

Side Frequency (MHz) Data width (bits) Words Mode

Input 27 or 100
41 128 Dual-clock, show-ahead

Output 100

Read Address FIFO

Side Frequency (MHz) Data width (bits) Words Mode

Input
100 25 128

Synchronous,show-ahead, indicates
when FIFO is almost emptyOutput

Read Data FIFO

Side Frequency (MHz) Data width (bits) Words Mode

Input
100 16 128

Synchronous, show-ahead, indicates
when FIFO is almost fullOutput

26

7 Implementation of FPGA Internal Components

7.1 Implementation of Command Center Component

An internal FPGA component, further in the text referred to as the command center com-
ponent, was created to make testing and communication with the FPGA less challenging. This
component consists of main process and a command-specific process for each command. The
command center is connected to the SDRAM peripheral, UART peripheral, image controller, and
other system-level processes and algorithms. A simplified block diagram of the core components
is shown in Figure 10.

Different command-specific processes may have to reuse the same external components.
Multiplexing is used to switch between command-related signals that are connected to these
components, which also allows for saving resources by not using duplicate components. An
example of this multiplexing can be seen in the Figure 10, where the red dashed line indicates
the sharing of the image controller by multiplexing. The selection of a multiplexer channel
is dependent on the active command. In this case, the image controller component is shared
between 0x03 and 0x04 commands. Commands and command-specific processes are described
further in this section.

Figure 10. Simplified block diagram of the command center component containing connections
with other core components. Red dashed line indicates area where multiplexing takes place to
share the image controller component

The main process is responsible for parsing the messages from the UART receiver FIFO,
decoding the messages, and managing other command-specific processes. A typical command
message structure consists of one identification (ID) byte (0xEC) and one command byte,
followed by command-specific data transmitted or received. A summary of the commands can
be seen in Table 3.

27

Table 3. Summary of the commands that the command center can parse and the subsequent data
that is either received or transmitted

While no active command has been issued, the command center is in an IDLE state, which
keeps all other connected components in a reset state. Once a byte is available in the UART
peripheral receiving FIFO, the command center process checks if the byte corresponds to the
identification byte 0xEC. If it does not match, the byte is discarded, but if there is a match, the
process moves into the DECODE state that waits for the next byte in the UART receiver FIFO.
When a command byte is received that corresponds to a valid command, the command center
process waits for additional data if the command requires it or moves to the ACTIVE state,
toggles the reset signal of the processes that correspond to the command tasks, and waits for a
signal that indicates that the process has finished. After receiving a ”Done” signal, the process
returns to the IDLE state.

28

7.1.1 Implementation of Test Image Write and Read Commands

This command aims to write test image data into the SDRAM. The main element responsible
for successfully implementing the command is the command center’s main process that reads and
temporarily stores the received address and data information and initiates the 0x01 command-
specific process. The SDRAM write FIFO 41-bit data input is set with a data composite consisting
of the received address and pixel data, and the command-specific process triggers the write signal
if the FIFO is not full. From the moment the last packet is received, it takes exactly three clock
cycles from the Command Center perspective to finish this process and return to the IDLE state.

The received information consists of two bytes of row address, two bytes of column address,
and two bytes of pixel data. Two bytes are associated with a column and a row because the
SDRAM row and column lengths are 13 and 10 bits, respectively. This also means that the
received row and column bytes contain some information that is not used and is discarded. The
0th row of the test image is also offset by 6000 rows in the SDRAM because the test image and
the obtained CMOS image are stored in the same bank of the SDRAM. Visualization of this
storage can be seen in Figure 11.

Complimentary to the 0x01 test image write command is the 0x02 test image read command,
which allows the user to read off the test image written in the SDRAM for verification. This
command comprises the main process, the 0x02 command-specific process, the SDRAM periph-
eral, and the UART peripheral. The 0x02 command-specific process iterates and requests all
1000× 1500 pixel addresses from the SDRAM Peripheral through the read address FIFO. Once
the data appears on the output of the read data FIFO, the command-specific process transfers this
data to UART transmitter FIFO and keeps track of how much data has been processed. When
all data has been transferred, the command-specific process sets a signal to logic high level that
indicates to the main process that it has completed its task.

Because the image spatial resolution is 1000 × 1500, but the SDRAM row only has 1024
positions, two SDRAM rows are used to store a single test image row. Because of this approach,
every two test image rows leads to 476 unutilized memory positions in the SDRAM. The
equations 7. and 8. describe the relation between SDRAM memory positions and test image
pixels that are being stored. Visualization of this storage can be seen in Figure 11.

RSDRAM = RTest · 2 , if CTest < 1024

= RTest · 2 + 1 , if CTest ≥ 1024
(7)

CSDRAM = CTest , if CTest < 1024

= CTest − 1024 , if CTest ≥ 1024
(8)

29

7.1.2 Implementation of Test image Centroid Detection and Transfer Commands

Test image centroid detection is invoked by the 0x03 command, which results in centroid
detection for the image uploaded by command 0x01. The process for this component is slightly
more complicated compared to the previous commands. This command involves SDRAM
peripheral read address FIFO and read data FIFO (described in section 6.1.3), it involves the
centroid detection component (described in section 7.2), image controller (described in section
6.1.2), and an additional component that replicates the CMOS image sensor control signals.
As other command-specific processes also use these components, their input signals must be
multiplexed between them once a process is active. An example of similar multiplexing was
visualized in Figure 10.

The main goal of this command-specific process is to access the address of the test image
stored in the SDRAM by writing the address in the SDRAM peripheral read address FIFO.
Several cycles later, the data in the corresponding address appears in the SDRAM peripheral
read data FIFO. This data is then supplied to the CMOS sensor replicate component that outputs
this data along with the frame-valid and line-valid signals to the image controller and further
to the centroid detect component. When all of the image data has been processed and centroid
component also indicates that it has finished the procedures, the main process move back to the
IDLE state.

The detected centroid can be accessed through the 0x07 command that will read the centroid
data from the centroid detect component internal RAM. There are 255 positions for 88-bit wide
centroid data composites, but this number can be easily modified based on the application needs.
The centroid component is shared between the command 0x03 and 0x04, so 0x07 transmits
either the test image centroids or CMOS image sensor centroids, depending on which command
was invoked last.

The centroid data is passed to the UART peripheral component that transmits it over UART
in multiple packets. For a single centroid, an 11-byte frame has to be transmitted – 32-bit X
position, 32-bit Y position, and 24-bit intensity. The range 0th down to 31st bit contains a
floating point number representing the centroid X coordinate, the range 63rd down to 32nd bit
contains a floating point number representing the Y coordinate, and the range 87th down to 64th
bit contains an integer number representing the centroid’s intensity.

7.1.3 Implementation of CMOS Sensor Image Capture, Storage, and Centroid Detection
Command

The 0x04 command initiates CMOS image sensor capture, stores it in SDRAM and runs the
pixel data stream through the centroid detection component that detects centroids in real-time.
The command-specific process initiates image retrieval from the image sensor controller, the data
is passed to the SDRAM peripheral write FIFO and to the centroid detection component. The
command-specific process waits for the indication from the image controller and the centroid
detection component that all data have been processed. The process then indicates to the main
process that the command has been executed.

30

A single row of the CMOS sensor (2592 pixels in a row) does not fit inside a single row
of the SDRAM (1024 positions in a row). In the implementation provided in this thesis three
SDRAM rows are used to store a single image row. The storage of the image can be further
explained with equations 9 and 10, where RSDRAM and CSDRAM stands for SDRAM row and
column, respectively, and RCam and CCam stand for CMOS sensor image pixel row and column,
respectively. For every image row, 480 memory positions remain unutilized in the SDRAM.
However, knowing the equations 9. and 10., exact location of these unutilized memory positions
can be determined and then used to store some other form of data if necessary. The storage is
further visualized in Figure 11, which also indicates the position of the test image.

RSDRAM = RCam · 3 , if CCam < 1024

= RCam · 3 + 1 , if CCam < 2048

= RCam · 3 + 2 , if CCam < 2592

(9)

CSDRAM = CCam , if CCam < 1024

= CCam − 1024 , if CCam < 2048

= CCam − 2048 , if CCam < 2592

(10)

Figure 11. Visualization of SDRAM bank 0 memory allocation for CMOS sensor image and the
test image

Finally, the centroid detection at this point only provides a signal that the image has been
processed. If any centroids are detected, they are stored in FPGA internal RAM, which is part of
the centroid detection component and can be accessed through the 0x07 command.

31

7.1.4 Implementation of CMOS Sensor Image Read-Out Command

Command 0x05 initiates the CMOS sensor image read-out from memory. This is a relatively
simple task started off by the command-specific process requesting the pixel addresses of the
CMOS image from the SDRAM peripheral and subsequently from the SDRAM device. The
received data is then transferred to the UART peripheral, and transmitted out of the FPGA.
However, this process takes significant time because 1944× 2592 pixels must be transmitted,
resulting in approximately 1 minute download time through UART at 1 Mbaud/s. Currently, only
8 of the most significant bits (MSB) are transferred instead of all 12 bits of a pixel to decrease the
download time by half. The full 12 bit implementation was not implemented as in this thesis this
command was used to verify that the image has been successfully captured and stored. However,
simple modifications, consisting of using an additional cycle per memory access to transfer the
less significant bits to the UART peripheral, can be added to download images with 12-bit wide
pixel data.

32

7.2 Centroid Detection in Images

Before the stars can be identified in the image, the system has to detect the star positions.
The general principles of star detection were discussed in section 2.3. This section focuses on
the ESTCube-2 star tracker FPGA-based algorithm implementation that detects star centroids in
real-time as the pixel data is streamed from the image sensor. The general concept for detecting
the set of potential star pixels in the image was based on the implementation described in [22],
which also focuses on real-time star detection with an FPGA-based system. The goal of this
algorithm is to execute equations 4, 5, and 6 as the pixels are being streamed out of the image, and
then store the obtained coordinates in memory. However, the proposed steps and implementation
of [22] were not necessarily followed, and a modified version was implemented. For example,
during the algorithm implementation, IP cores capable of performing floating point calculations
were used to obtain sub-pixel centroid coordinates, though only in evaluation mode, available in
the Intel® Quartus® Prime Lite Edition. [30]
The following list summarizes the simplified steps of the implemented centroid detection compo-
nent:

1. Detect a set of nearby potential star pixels in a row (star-line in further text)

2. Store parameters of the star-line once it has ended

3. Compare it to previously obtained intermediate star elements that are stored in a FIFO
memory component

• If the FIFO is empty, then store star-line parameters as a new star element

• If there is a match, merge the star-line parameters with an intermediate star element

• If the row of the star line is two rows lower than the intermediate star element, then
the star element is released as a completed star

• If the star-line element does not match any intermediate star elements, then it is
stored as a new star element

Steps 1. and 2. are handled by a single process, which detects a set of nearby pixels in a row
(star-line) and keeps track of the information related to these adjacent pixels. When the star-line
ends, this information is stored in a FIFO memory component (FIFO-A in further text). A more
detailed description of this process is described in subsection 7.2.1.

At the core of step 3. is a process that handles conditions that may arise when processing
previously stored star-line elements. This process iteratively merges star-line elements that
are a part of the same potential star creating an intermediate star element. This process stores
intermediate star element data composites in another FIFO memory component (FIFO-B in
further text). It releases these elements from the FIFO-B when all of the pixels of a potential star
have been processed. A more detailed description of this step is described in the subsection 7.2.3.

33

7.2.1 Star-Line Element Storage

The first process involves detecting a set of nearby pixels in a row being streamed out of
the sensor. The further text will reference this set of pixels as a star-line. A star will consist of
more than one star-line element. Because the image sensor streams out the pixels row-by-row,
there will be additional data between the next star-line element in the following row, including
other star-line elements that are part of a completely different star. Due to this reason, FIFO-A is
used to store these star-line elements for further processing, where the relation between star-line
elements is based on the stored characteristics. Because this process and the input side of the
FIFO-A directly interact with the image data stream, they are synchronized with the clock signal
supplied by the image sensor.

Each pixel in the row is compared to a predetermined threshold, and if the pixel value exceeds
the threshold, it is considered a potential star pixel. When a bright enough pixel is detected,
star-line detection begins by storing the active image row and the column, setting the pixel count
to one, and setting the total intensity of the star-line to the pixel’s intensity. If the following
pixels exceed the threshold value, the pixel count is incremented, and the pixel’s intensity is
summed with the total intensity.

In some situations, there might be pixels below the required threshold, even if the following
pixels are bright enough and are a part of the same star. One such cause could be a dead pixel in
the image sensor, which leads to the pixel being permanently black. An additional "ghosting"
period was included to avoid such cases, allowing a predefined amount of pixels under the
required threshold but not stopping the detection process. When the ghosting period is exceeded,
the detection process stops, and a data composite consisting of data related to the star-line
element is stored in the FIFO-A. Figure 12 summarizes the data contents of the data composite
stored in the FIFO-A.

Figure 12. Data composite consisting of information describing a set of nearby pixels detected in
a row. This data composite is 72 bits long and is stored in FIFO-A, where it will wait for further
processing

34

Typical actions during this process are visualized in Figure 13., where an example image of a
star and a table of actions taken at each pixel is presented. One case when the recorded values
are discarded is when the number of pixels in the set of row pixels exceeds a predefined limit,
which indicates that there are too many pixels to be a part of a star. Similarly, the recorded values
are discarded if there are too few pixels.

Figure 13. Example image of a star with labeled pixels. The label indicates the order in which
pixels would be accessed in the image. The table describes what actions are taken during pixel
access.

35

7.2.2 Calculation of XCenter and Ycenter

The center values for star-line and intermediate star elements are obtained with a component
that includes multiple Intel IP cores that allow different floating-point manipulations and arith-
metic functions. Figure 14 visualizes the signal flow, inputs/outputs, and the used IP cores and
their connections. Each IP core is associated with a latency period between the change in the
input signal and valid states appearing on the output. In total, 22 cycles are required to obtain a
valid output from this component.

The difference between equations 4 and 6 are the input values. Based on this observation, it
was possible to reuse the component to obtain the star-line element Xcenter value and intermediate
star element ycenter value by multiplexing the input signals in different states of the centroid
detection component. The Xcenter values are calculated by default, and the multiplexer switches
to Ycenter calculations only when the intermediate star elements in FIFO-B are completed and
have to be released.

Figure 14. Block diagram of the hardware component responsible for replicating equations 4
and 6.

36

7.2.3 Processing of Intermediate Star Elements

The process described in this section is responsible for forming and keeping track of inter-
mediate star elements that span multiple rows. Another FIFO memory component, previously
mentioned as FIFO-B, lies at the heart of this process. Intermediate star element processing lies
in the 50 MHz clock domain, which differs from the process responsible for the star-line element
processing clocked from the CMOS sensor 27 MHz clock.

FIFO-B stores information about intermediate star elements that are iteratively modified until
all star-line elements of the same potential star have been processed. Newly formed elements
from the FIFO-A star-line elements are compared to the existing intermediate star elements
of FIFO-B. Based on the differences between the newly formed and existing intermediate star
elements, the state of the FIFO memory components, and the image transfer state, the process
must handle different conditions. The overall flow diagram of this process and its different
operations can be seen in Appendix I.

The intermediate star element data composite stored in the FIFO-B comprises information
that characterizes a potential star in the image. Information stored in this composite eventually
provides data required to calculate the final centroid X and Y coordinates through equations 5
and 6. The contents of this data composite are visualized in Figure 15.

Figure 15. Star element data composite stored inside the FIFO-B memory component. This
composite is 112 bits wide and consists of 8 different values characterizing a potential star.

FIFO-A not being empty triggers this process to transfer from idle to active state. When
a star-line element is available in the FIFO-A, but FIFO-B is empty, a new intermediate star
element is initialized with a calculated Xcenter value and other characteristics obtained from the
FIFO-A star-line element.

When FIFO-B is not empty, the process compares the active row of the FIFO-A star-line
element and the last row of the intermediate star element present at the FIFO-B output. The last
row is obtained by summing up the starting row and the total number of rows of the intermediate
star element. There are three different comparison outcomes, the rows match, the difference
between the rows is equal to one, and the difference between rows is greater than one. Based
on these outcomes, the process takes different paths and performs different procedures, also
visualized in Appendix I.

In principle, the latest row in the intermediate star element can’t match the row of the star-line
element since two star-line elements residing in the same row can’t be a part of the same star.

37

So if the rows match, the intermediate star element is irrelevant at that moment, but it must be
re-queued in FIFO-B because it might be relevant for the following star-line elements. If all of
the elements in FIFO-B have not been checked, a new intermediate star element is requested,
and comparison occurs again. If all elements in FIFO-B have been compared to the star-line
element, then a new intermediate star element data composite must be formed and stored in
FIFO-B, where the active star-line element will set the base parameters.

When the difference between the rows is equal to one, the star-line element resides in the
next row compared to the last row of the intermediate star element. This gives the star-line
element the potential to be a part of the same star that the intermediate star element is forming.
For a star-line element to merge with the intermediate star element, the distance between the
starting or ending columns must remain below a threshold to ensure that the star-line is close
enough to be merged. If the threshold is exceeded, the star-line element is too far away from the
intermediate star element to be a part of the same potential star, and it is re-queued in FIFO-B. If
all the intermediate star elements in FIFO-B have not been checked, a new element is requested,
and a comparison occurs again. Otherwise, a new intermediate star element is formed based
on the star-line element and queued in the FIFO-B. If the distance is below the threshold, then
the star-line element is a part of the same star, and the process can move to update the accessed
FIFO-B intermediate star element with new values and queue this new element in FIFO-B.

The last condition between the star-line and intermediate star element rows is when the
difference is greater than one. It indicates that there will be no further star-line elements related
to the accessed intermediate star element, and it can be released. Once the element has been
released, the comparison continues with other intermediate star elements in FIFO-B. Similar to
other cases, if all elements have already been checked, a new intermediate star element is formed
based on the star-line and queued in FIFO-B. A more detailed description of the intermediate
star element release procedure is explained in section 7.2.4.

There is a special condition that is not included in Appendix I. This condition occurs at the
end of the process when all of the image pixels have been streamed out of the sensor, and a
signal is supplied to the process indicating that this state is reached. When this signal indicates
the end of an image, and the FIFO-A becomes empty, a different procedure is executed, and
the remaining star elements in FIFO-B are released according to the procedure described in the
following section 7.2.4. With the last element released from the FIFO-B, the centroid detection
component will remain idle, and a reset signal must be invoked to successfully perform another
centroid detection procedure.

38

7.2.4 Star Element Release and Centroid Storage

When all of the star-line elements of a potential star have been processed and merged, the
intermediate star element is completed. Final calculations can be performed, and the centroid
coordinates with the total intensity are stored in memory for further access by other components.

The final calculations include implementing the equations 5 and 6. The Ycenter position is
obtained with the component described in section 7.2.2. switching the input signals through
multiplexing. The final Xcenter position is a simple averaging function. It includes a simple
division of the previously accumulated Xcenter values of individual star-line elements and a
division of rows in the intermediate star element.

A dual-port, dual-clock RAM is inferred as the memory component responsible for coordinate
and centroid intensity storage. One side of the RAM is used for writing centroids, which is used
by the centroid detection component, and a 50 MHz clock signal clocks it. The other side is
clocked by 100 MHz, and it is meant only for reading procedures and is accessible by other
FPGA components. X coordinate, Y coordinate, and the intensity are stored as a single data
element in the RAM. The current configuration of the RAM component allows 255 centroids.
However, this configuration can be easily changed by changing the generic parameters of the
RAM component and making changes in the centroid detection algorithm that correspond to the
maximum allowable centroids. Once all centroids have been processed and stored in RAM, the
centroid detection component outputs a signal to other components indicating that it has finished
its tasks.

39

8 Results

8.1 Consumption of FPGA resources

This section describes the final hardware resource usage by the designed components dis-
cussed in the previous sections. The latest configuration of the FPGA uses 31% (6913 of 22320)
of the available logic elements. The internal FPGA RAM uses approximately 22% (134578 of
608256 bits). One phase-locked loop (PLL) is used to convert 50 MHz to 100 MHz. In the parts
where the design uses 27 MHz, the frequency is sourced from and synchronized with the CMOS
sensor. In the final design of the FPGA uses 30% (39 of 132) embedded multiplier elements.

8.2 Performance of the Commnad Center Component

The command center component currently implements six different commands that the user
can send to initiate some process, write, or read data. These commands can then be used to
evaluate the performance of other components.

By invoking command 0x01, the user can upload images with the maximum size of 1000×
1500 pixels. The image upload takes approximately 2 minutes because each pixel transmission
is associated with 8 bytes as described in Section 7.1.1 and visualized in Table 3.

Correct storage of the uploaded test image can be verified with command 0x02, which initi-
ates the test image extraction through the UART peripheral. It takes approximately 15 seconds
to download a 1000× 1500 image with UART at 1 MBaud/s. Figure 16(a). visualizes the image
sent to the FPGA with series of 0x01 commands. Figure 16(b) visualizes the image that was
obtained with the 0x02 command. The original image of a cameraman is slightly modified to
include additional padding with black pixels to obtain the required 1000× 1500 pixel test image.
The sent and received images were verified to be identical, indicating proper storage.

(a) Test image sent to the FPGA through series of
0x01 commands

(b) Test image received from the FPGA invoking
0x02 command

Figure 16. Test images sent to and received from the FPGA. 256x256 pixel image padded with
black pixels to obtain a 1000× 1500 pixel test image.

40

To verify commands 0x03 and 0x07, a test image containing stars was uploaded with
command 0x01. Centroid detection was applied with command 0x03; then, centroid information
was extracted from the FPGA through UART peripheral with command 0x07. Figures 19. and
20. were used to verify these commands.

Command 0x04 was used to capture an image from the CMOS image sensor, and then com-
mand 0x05 was used to extract the captured image out of the FPGA through the UART peripheral.
The extraction of the 1944x2952 pixel CMOS image sensor image takes approximately 1 minute
if the UART baud rate is set to 1 MBaud/s. The captured image is presented in Figure 17.

Figure 17. 1944 × 2952-pixel CMOS sensor image captured with 0x04 command and then
transferred through UART with 0x05 command.

41

8.3 Centroid Detection Performance

The performance of the star detection algorithm was evaluated based on its capability of
finding centroid coordinates in a simulation environment and on real FPGA as per the method
described in section 5. A single test component was created that was placed both in the simulation
testbench and in real-life FPGA, where in both cases, it received three different clock inputs:
27 MHz, 50 MHz, and 100 MHz. The test component’s connection in FPGA and simulation
can be seen in Figure 18. One output signal was used as a UART transmit signal to transfer the
centroid data from the test component. The test component contained an embedded 10×20 pixel
test image seen in Figure 19. passed through the centroid detection algorithm pixel by pixel like
the CMOS sensor camera would. When all pixels have been streamed, and the centroid detection
has also been finished, the centroid data is transmitted over UART. This image was manually
constructed with arbitrary, pre-defined star elements and pixel values. It only serves the purpose
of verification and may not fully represent the capabilities or downfalls of the centroid detection
algorithm.

Figure 18. Simplified diagram of the setup used for verify the performance of the centroid
detection algorithm based on a predefined 10× 20 pixel image

42

The expected results were calculated by hand using equations 4, 5, and 6. In this case, the
algorithm’s threshold and ghosting values were also set to arbitrary values - four and three,
respectively. These values were chosen based on the evaluation of the pre-defined test image seen
in Figure 19. and would not serve any purpose in the final FPGA design. The pixel threshold
level should be obtained through empirical or probabilistic methods as described in section 2.3.
The final ghosting level could be based on the quality of the image obtained in the star tracker’s
final operation; it may require updates based on the damage the CMOS image sensor may
experience during the mission period. The expected, simulation, and FPGA centroid coordinates
for the pre-defined test image can be seen in Table 4.

Figure 19. Manually generated test image containing star imitations. This image was used
to verify that the output of centroid detection component in simulation and FPGA match the
expected values

Table 4. Table summarizing the centroid positions obtained from the Figure 19 by manual
calculations, the simulation and the FPGA.

Centroid Nr.
Expected Coordinate Simulation Coordinate FPGA Coordinate

X Y X Y X Y
1 1.981 0.4815 1.981 0.4815 1.981 0.4815
2 7.987 4.067 7.987 4.096 7.987 4.096
3 16.88 3.137 16.88 3.137 16.88 3.137
4 14.76 7.500 14.76 7.500 14.76 7.500

Afterward, centroid detection was performed on a real image through the command center
component. There were attempts to capture images of stars with the real image sensor, but there
were issues with CMOS image sensor configuration and exposure time that denied acquiring an
image with visible stars. Thus, the centroid detection component was supplied with test images

43

obtained with a CMOS sensor and optics similar to the ones used in the final ESTCube-2 star
tracker hardware. The used image of the sky containing stars can be seen in Figure 20. As the
original image size was larger than the supported test image size, only the first 1000 rows and
1500 were used. The used 1000× 1500 pixel area is also pointed out in Figure 20. by the red
rectangle. The centroid coordinate values obtained with the centroid detection component were
compared with the centroid results obtained by the "DAOStarFinder" function, which is a part of
the photutils.detection module in Python.

Figure 20. Original image of the night sky with stars obtained by ESTCube-2 star tracker CMOS
sensor and optics similar to the one used in satellite flight hardware. The red border indicates the
1000x1500 pixel area being cropped for further usage with the centroid detection component.

Because FPGA implementation for adaptive thresholding was not successfully achieved in
this thesis, a Python script was used to calculate the pixel intensity mean and standard deviation
values of the image seen in Figure 20. The obtained standard deviation value was 34.6 analog-to-
digital units (ADU). The threshold value for the centroid detection component was initially set
to a pixel intensity value over the sum between the mean and five standard deviations, according
to Ayal’s solution [21]. For the image seen in Figure 20, this resulted in 173 ADU. However, the
centroid detection component could not accurately differentiate stars with this threshold level.

After an unsuccessful attempt, the threshold value for the centroid detection component
was raised to ten standard deviations over the mean - 346 ADU. The resulting coordinates can
be seen in Figure 21., where the blue circles mark centroids found by the "DAOStarFinder"
function, and the red circles mark centroids found by the designed FPGA centroid detection

44

component. The "DAOStarFinder" function found 309 stars; the designed centroid detection
component found 148 centroids. Out of the 148 centroids, 128 centroids were within 10 pixels of
a centroid found by the "DAOStarFinder" function. The mean X coordinate difference between
these matching centroids obtained by the "DAOStarFinder" function and the centroid detection
component was 0.520 pixels, and 0.641 pixels for the Y coordinate. Out of 128 cases, there were
14 cases where the distance between coordinates found by the "DAOStarFinder" and the centroid
detection component was more than one pixel.

Figure 21. Image of the night sky. The red circles mark the stars detected by the designed FPGA
centroid detection component; the blue circles mark the stars detected by the "DAOStarFinder"
function in Python. The threshold for the centroid detection was set to 346 ADU.

45

Figure 22. Image of the night sky, where stars detected by the "DAOStarFinder" function and the
centroid detection component are within 10 pixels of each other and are marked with blue and
red circles, respectively. The threshold for the centroid detection was set to 346 ADU.

Figure 23. Zoomed-in area that is pointed out with a red rectangle in Figure 22., where multiple
stars, found by both the "DAOStarFinder" function and centroid detection component, overlap.

46

8.4 Performance of Adaptive Thresholding Method

This section attempts to integrate and test Ayal’s proposed adaptive thresholding method.
[21] In Ayal’s thesis, the VHDL source code of functions for division and square root integer
operations was provided. In this thesis, source code was directly imported, and an additional
test component was made to test their performance. The arithmetic function source code is
hard-coded to handle 16-bit wide data, but the author slightly adjusted it to support any supplied
data width. This test component was made according to the methodology described in section 5.

The only input for the test component is a 100 MHz clock signal, and the output of this
component is the UART transmit signal. This component iterates through a varying integer
signal from 1 to 255. A constant 255 numerator is used for the division function, and the varying
integer signal is used as a denominator. The input for the square root function is the varying
integer signal.

Figure 24. Block diagram of the test setup used to evaluate Ayal’s solution to the integer division
and square-root functions.

47

In simulation, the output of both functions acted as expected and provided correct results.
However, the real-life results of the division function did not match the same UART TX output
pattern obtained in the simulation, though the majority of values appeared correct. Multiple,
but not all, simulation and real-life measurement results can be seen in Figure 25. The author
believes the inconsistent real-life results are caused by using only combinational logic and a
large amount of it (both arithmetic functions use approximately 1000 logic elements for 16-bit
wide data) in the arithmetic functions and then supplying the inputs and registering the outputs
with signals clocked by 100 MHz. This is also indicated by the Intel® Quartus® Prime Lite
Edition timing report, where the maximum setup time5 violation was 39 ns.

(a) Simulation results of integer division and square root functions. The top row is the 100 MHz clock signal, the
second is the division numerator, the third is the division denominator and square root input, the fourth is the
square root result, and the fifth is the division result.

(b) FPGA test results measured with an oscilloscope. The blue channel shows the RS232-coded square-root
result, and the yellow channel shows the RS232-coded division result. The top decimal row presents the decoded
decimal value of the square root function. The bottom decimal row presents the decoded decimal value of the
division function.

Figure 25. Inconsistent results between simulation and FPGA tests when performing integer
division and square root functions. The division denominator and the square root input is
incremented from 1 to 255. The figure does not visualize all results.

5The input signal must be stable for a certain amount of time before the latching event.

48

A proposed solution could be decreasing the clock frequency to provide more time for the
signals to travel through combinational logic before registering the output of the arithmetic
functions or increasing the time the input signals are stable. Additional frequency sources should
not be added to the existing design to avoid further complexity and possible clock domain
crossing issues. Because the timing violation was 39 ns and the period of the 100 MHz clock
signal was 10 ns, five clock cycles were added to hold inputs to the arithmetic functions. In the
FPGA, frequencies higher than 100 MHz are not used. This leads to results shown in Figure 26,
where simulation and real-life results match.

(a) Simulation results of integer division and square root functions when introducing additional five cycle
delay. The top row is the 100MHz clock signal, the second is the division numerator, the third is the division
denominator and square root input, the fourth is the square root result, and the fifth is the division result.

(b) FPGA test results measured with an oscilloscope when introducing a five-cycle delay. The blue channel
shows the RS232-coded square root result, and the yellow channel shows the RS232-coded division result.
The top decimal row presents the decoded decimal value of the square root function. The bottom decimal row
presents the decoded decimal value of the division function.

Figure 26. Consistent results between simulation and FPGA tests when performing integer
division and square root functions when introducing a five-cycle delay. The division denominator
and the square root input is incremented from 1 to 255. Figures do not visualize all results.

49

To successfully implement the adaptive thresholding, the image’s pixel intensity standard
deviation must be obtained following equations 2 and 3. However, the further usage of the
provided functions causes concerns due to the possibility of significantly increasing resource
consumption.

If the CMOS image size is 1944× 2952 pixels and the maximum pixel value is 4095, then
during the mean calculation, the image pixels must be continuously summed and divided by
the number of pixels in the image. Although many high-intensity pixels are not expected, they
can still be present and may lead to large values. For example, the star image in Figure 21 has
1000 × 1500 pixels (considerably lower than the original CMOS image) but already requires
data widths of 29 bits to sum all of the image pixels. This issue becomes even more apparent in
standard deviation calculation, where the difference between the mean and individual pixels is
squared and then continuously summed, leading to a possibility of very large numbers before the
division and root functions.

Due to these reasons, the author did not explore further solutions for adaptive thresholding,
though there might be some optimizations or simplifications that would make this solution more
efficient and viable to use in the final design.

50

9 Conclusion

This thesis aimed to develop and implement an FPGA design for the ESTCube-2 star tracker
flight electronics that were created by the author prior to this thesis. The implemented FPGA
design was expected to offer the possibility to interface with different devices and perform higher-
level star tracker functions such as image acquisition/storage, star detection, star identification,
and/or attitude determination.

Throughout this thesis, an emphasis has been placed on the seemingly simple interface
between the designed FPGA components and the interface between external devices. The core
idea behind this approach was to standardize the interface between components responsible for
different peripherals and the designed internal FPGA components. Different abstractions of
FPGA components were made in the FPGA design implementation leading to a standardized
interface between different components and peripherals. This alleviated the complexity of
individual components and made the processes more localized and less affected by events or
states occurring in different parts of the FPGA device. This approach may simplify FPGA
development efforts further by laying a solid foundation.

A command center component was implemented that allows users to interface with the
FPGA, give commands, write and read data, and make testing easier. The command center
implementation is simple and can be easily extended with new commands while not affecting
the nature of the old commands. The current command center solution might not be helpful in
the final autonomous star tracker version, but it can be modified to cycle through the described
command processes based on factors other than commands.

A star detection algorithm was implemented for the ESTCube-2 star tracker system that can
detect potential star coordinates in real-time as the data is streamed from the image sensor. This
component involves single-precision floating-point calculations and outputs sub-pixel coordinates
through involving Intel floating-point arithmetic IP codes. The algorithm was initially tested with
a predefined image supplied to the simulation and the actual FPGA for algorithm verification
purposes. In this case, the simulation and the FPGA provided similar results and aligned with
the expected coordinate values. Afterward, the centroid detection algorithm was tested with
an image of the sky obtained by a CMOS sensor and optics similar to the ones used in the
ESTCube-2 star tracker system flight hardware. Unfortunately, acquiring an image of stars from
the CMOS image sensor connected to the ESTCube-2 star tracker flight model electronics was
unsuccessful.

Implementation of the proposed adaptive thresholding method in VHDL was unsuccessfully
attempted. Possible reasons for this lack of success were theorized, and possible solutions and
optimizations that could lead to positive results in future work were provided.

Currently, the ESTCube-2 star tracker FPGA can perform the minimum requirements of
the star tracking procedure, including image acquisition, image storage, centroid detection, and
transfer of the coordinates/images to the MCU. Future work would require implementing geo-
metric parameter extraction, star identification, and star tracking functionality on the ESTCube-2
star tracker flight electronics with the available resources of the FPGA or the MCU.

51

References

[1] Onsemi, “MT9P031 - 1/2.5-Inch 5 Mp CMOS Digital Image Sensor.” https://www.

onsemi.com/pdf/datasheet/mt9p031-d.pdf, 2021.

[2] D. Turcu and G. A. Stan, “Purpose of using cubesat satellite technologies in the military
domain,” Proceedings of the 17th International Scientific Conference Strategies XXI, vol. 17,
no. 1, 2021.

[3] S. Cole, “Small satellites increasingly tapping COTS components.” Military Em-
bedded Systems, June 2015. https://militaryembedded.com/comms/satellites/

small-tapping-cots-components.

[4] S. Caldwell, “What are SmallSats and CubeSats?.” https://www.nasa.gov/

what-are-smallsats-and-cubesats/.

[5] S. Stoyanova, “Star trackers lights the way.” NASA Podcasts, September 2008. https:

//www.nasa.gov/multimedia/podcasting/StarTrackers.html.

[6] G. V. M. E. Team, “Gemini program mission report,” tech. rep., NASA, January 1966.

[7] B. Dunbar, “Project Gemini: Apollo’s training ground,” October 2008. https://www.

nasa.gov/centers/kennedy/about/history/gemini.html.

[8] P. Ceruzzi, “Deep space navigation: The Apollo VIII mission,” Quest, vol. 17, no. 4,
pp. 8–17, 2010.

[9] R. E. Wilson, Jr., “Apollo Experience Report - Guidance and Control Systems,” tech. rep.,
NASA, June 1976.

[10] D. G. Hoag, “Apollo Navigation, Guidance, and Control Systems,” tech. rep., NASA, April
1969.

[11] C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerospace and Electronic

Systems Magazine, vol. 10, no. 6, pp. 10–16, 1995.

[12] P. S. Jorgensen, J. L. Jorgensen, and T. Denver, “MicroASC a miniature startracker,”
Proceedings of The 4S Symposium: Small Satellites, Systems and Services, 2004.

[13] J. L. Jorgensen, C. C. Liebe, A. R. Eisenman, and G. B. Jensen, “The advanced stellar
compass onboard the Oersted satellite,” Spacecraft Guidance, Navigation and Control

Systems, Proceedings of the 3rd ESA International Conference, 1997.

[14] J. L. Jorgensen, “In-orbit performance of a fully autonomous star tracker,” Spacecraft

Guidance, Navigation and Control Systems, Proceedings of the 4th ESA International

Conference, 2000.

52

https://www.onsemi.com/pdf/datasheet/mt9p031-d.pdf
https://www.onsemi.com/pdf/datasheet/mt9p031-d.pdf
https://militaryembedded.com/comms/satellites/small-tapping-cots-components
https://militaryembedded.com/comms/satellites/small-tapping-cots-components
https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://www.nasa.gov/multimedia/podcasting/StarTrackers.html
https://www.nasa.gov/multimedia/podcasting/StarTrackers.html
https://www.nasa.gov/centers/kennedy/about/history/gemini.html
https://www.nasa.gov/centers/kennedy/about/history/gemini.html

[15] C. C. Liebe, “Accuracy performance of star trackers–a tutorial,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 38, no. 2, pp. 587–599, 2002.

[16] Vectronic-Aerospace, “Star trackers VST-68M, VST-41M,” 2023. https://www.

vectronic-aerospace.com/star-trackers/.

[17] Terma, “T3 star tracker,” 2023. https://www.terma.com/products/space/

star-trackers/.

[18] RedWire, “SpectraTRAC star tracker,” 2023. https://redwirespace.com/products/

spectratrac/.

[19] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and

Control. Microcosm Press and Springer, 2014.

[20] S. B. Howell, Handbook of CCD Astronomy, vol. 5 of Cambridge Observing Handbooks

for Research Astronomers. Cambridge University Press, 2 ed., 2006.

[21] A. R. Ayal, “Star detection algorithm for ESTCube-2 star tracker,” 2016. Available at
https://dspace.ut.ee/items/b6944b6f-141d-4946-94c7-1e407cf94f48.

[22] M. Lindh, “Development and Implementation of Star Tracker Electronics,” 2014. Available
at https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148955.

[23] J. Laks, “Developing hardware for the ESTCube-2 star tracker,” 2019. Available at
https://dspace.ut.ee/items/4afadfd1-a7ff-4d71-8220-d963cc2b2f50.

[24] S. Schumann, “Using star identification algorithms on ESTCube-2 star tracker,” 2019. Avail-
able at https://dspace.ut.ee/items/b4f02328-cabb-46d1-8128-e1b508c92c2a.

[25] Altera, “Cyclone IV Device Handbook.” https://www.intel.

com/content/www/us/en/docs/programmable/767845/current/

cyclone-iv-featured-documentation-quick.html, 2016.

[26] Integrated Silicon Solution Inc, “IS42/45R86400D/16320D/32160D
IS42/45S86400D/16320D/32160D.” https://www.issi.com/WW/pdf/42-45R-S_

86400D-16320D-32160D.pdf, 2015.

[27] Micron Technology Inc., “MT25QL512ABB - Micron Serial NOR Flash Memory.”
https://media-www.micron.com/-/media/client/global/documents/products/

data-sheet/nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_l_512_abb_0.

pdf, 2013.

[28] Intel, “FIFO Intel® FPGA IP User Guide.” https://www.intel.com/content/www/us/

en/docs/programmable/683522/18-0/user-guide.html, 2018.

53

https://www.vectronic-aerospace.com/star-trackers/
https://www.vectronic-aerospace.com/star-trackers/
https://www.terma.com/products/space/star-trackers/
https://www.terma.com/products/space/star-trackers/
https://redwirespace.com/products/spectratrac/
https://redwirespace.com/products/spectratrac/
https://dspace.ut.ee/items/b6944b6f-141d-4946-94c7-1e407cf94f48
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148955
https://dspace.ut.ee/items/4afadfd1-a7ff-4d71-8220-d963cc2b2f50
https://dspace.ut.ee/items/b4f02328-cabb-46d1-8128-e1b508c92c2a
https://www.intel.com/content/www/us/en/docs/programmable/767845/current/cyclone-iv-featured-documentation-quick.html
https://www.intel.com/content/www/us/en/docs/programmable/767845/current/cyclone-iv-featured-documentation-quick.html
https://www.intel.com/content/www/us/en/docs/programmable/767845/current/cyclone-iv-featured-documentation-quick.html
https://www.issi.com/WW/pdf/42-45R-S_86400D-16320D-32160D.pdf
https://www.issi.com/WW/pdf/42-45R-S_86400D-16320D-32160D.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_l_512_abb_0.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_l_512_abb_0.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/nor-flash/serial-nor/mt25q/die-rev-b/mt25q_qlkt_l_512_abb_0.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683522/18-0/user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683522/18-0/user-guide.html

[29] E. Peňa and M. G. Legaspi, “UART: a hardware communication protocol understanding
universal asynchronous receiver/transmitter,” Analog Dialogue, vol. 54, no. 4, 2020.

[30] Intel, “Floating-Point IP Cores User Guide.” https://www.intel.com/content/www/

us/en/docs/programmable/683750/23-1/about-floating-point-ip-cores.html,
2023.

54

https://www.intel.com/content/www/us/en/docs/programmable/683750/23-1/about-floating-point-ip-cores.html
https://www.intel.com/content/www/us/en/docs/programmable/683750/23-1/about-floating-point-ip-cores.html

Appendix

I Flow Charts

Figure 27. Flow chart of the process described in the section 7.2.3. NSE corresponds to ”New
Star Element”, and CSE corresponds to ”Current Star Element” available at the output of FIFO-B
memory component

55

II Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Roberts Oskars Komarovskis,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital
archives until the expiry of the term of copyright,

Development and Implementation of ESTCube-2 Star Tracker FPGA Design,

supervised by Kristo Allaje and Tõnis Eenmäe.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the
public via the web environment of the University of Tartu, including via the DSpace digital
archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by
giving appropriate credit to the author, to reproduce, distribute the work and communicate
it to the public, and prohibits the creation of derivative works and any commercial use of
the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual
property rights or rights arising from the personal data protection legislation.

Roberts Oskars Komarovskis
23/12/2023

56

	Acronyms and Abbreviations
	Introduction
	Star Tracking
	History of Star Trackers
	Principles of Star Tracking
	Star Detection

	Prior Work
	Star Tracker Electronics
	Methodology
	Implementation of Peripheral and Controller Layer
	Peripheral Interface
	UART Peripheral Layer Implementation
	Image Sensor Controller Layer Implementation
	SDRAM Peripheral

	Implementation of FPGA Internal Components
	Implementation of Command Center Component
	Implementation of Test Image Write and Read Commands
	Implementation of Test image Centroid Detection and Transfer Commands
	Implementation of CMOS Sensor Image Capture, Storage, and Centroid Detection Command
	Implementation of CMOS Sensor Image Read-Out Command

	Centroid Detection in Images
	Star-Line Element Storage
	Calculation of XCenter and Ycenter
	Processing of Intermediate Star Elements
	Star Element Release and Centroid Storage

	Results
	Consumption of FPGA resources
	Performance of the Commnad Center Component
	Centroid Detection Performance
	Performance of Adaptive Thresholding Method

	Conclusion
	References
	Appendix
	Flow Charts
	Licence

