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Continuous Collaborative Mapping in Unknown Environments: A
Multi-Robot System Approach

Abstract:
Navigating and exploring unknown terrains remains a critical challenge within the
field of mobile robotics. Achieving rapid and consistent exploration is crucial for the
prompt generation of precise maps. This thesis introduces a cutting-edge distributed
exploration system utilizing a multi-robot fleet. This innovative system is crafted to
facilitate continuous exploration in unexplored areas by implementing a novel drone-
based communication relay method. Additionally, it enables the synthesis of an integrated,
comprehensive global map, providing crucial, rapid insights for human operators into
the explored areas. The effectiveness of this system has been thoroughly evaluated
through a series of simulated experiments encompassing various trials. These evaluations
underscore the system’s capability in smoothly conducting exploration tasks, notably
overcoming delays traditionally linked to communication challenges.
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Pidev koostööl põhinev kaardistamine tundmatus keskkonnas: Mitme
roboti süsteemi lähenemisviis
Lühikokkuvõte:
Tundmatul maastikul navigeerimine ja selle uurimine on endiselt kriitiline väljakutse
mobiilse robootika valdkonnas. Kiire ja järjepidev uurimine on oluline täpsete kaartide
kiireks koostamiseks. Käesolevas väitekirjas tutvustatakse tipptasemel hajutatud uurin-
gusüsteemi, mis kasutab mitut robotit hõlmavat laevastikku. See uuenduslik süsteem
on loodud selleks, et hõlbustada pidevat uurimistegevust uurimata aladel, rakendades
uudset droonidel põhinevat kommunikatsioonivahetuse meetodit. Lisaks võimaldab see
luua integreeritud, tervikliku globaalse kaardi, mis annab inimoperaatoritele olulise ja
kiire ülevaate uuritud piirkondadest. Selle süsteemi tõhusust on põhjalikult hinnatud
mitmete simuleeritud katsete abil, mis hõlmavad erinevaid katseid. Need hindamised
rõhutavad süsteemi võimet sujuvalt teostada uurimisülesandeid, eriti ületades viivitusi,
mis on tavapäraselt seotud kommunikatsiooniprobleemidega.

Võtmesõnad:
Mitme robotiga süsteemid, autonoomne uurimine, koostööl põhinev kaardistamine, sa-
maaegne lokaliseerimine ja kaardistamine (SLAM), mobiilne robootika, laevastiku hal-
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damine

CERCS:T125 Automatiseerimine, robootika, juhtimistehnika ; T120 Süsteemitehnoloo-
gia, arvutitehnoloogia
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1 Utilization of ChatGPT in Manuscript Refinement
I am giving this explanation in line with section 4 of the University of Tartu’s guidelines
regarding the use of ChatGPT [2].
The ChatGPT tool [3], developed by OpenAI, served as an auxiliary aid in fine-tuning
the content of this thesis. It proved beneficial in translating complex concepts into more
accessible language and in choosing fitting vocabulary. The tool’s role was crucial in
clarifying and succinctly expressing the ideas and arguments, ensuring they accurately
reflected the intended meaning. It is important to emphasize that all the work presented
in this manuscript is solely my own. The research ideas, experimental designs, and
all informational content within this text originated from my efforts. ChatGPT was
employed solely for refining and enhancing the manuscript, which is entirely a product
of my research and writing.

2 Introduction
In the modern-day landscape of technology, robotics, particularly within the domain of
mobile robots, has gained traction with the potential to redefine human interaction with
the environment. Robotics has demonstrated significant promise for reshaping various
sectors. Recent years have witnessed the rise of intelligent robotic systems, equipped
with advanced sensors, perceptive capabilities, and decision-making prowess. This rise
has found application across diverse fields such as agricultural surveying [4], radiation
monitoring in nuclear facilities [5], mine exploration [6], pipeline surveillance [7], and
search and rescue operations [8].

Recent trends and growing interest in robotics have made robot parts like sensors and
microcontrollers cheaper and better. This improvement has made it easier to run complex
programs and has drawn more attention from researchers and industries. As a result,
robots and self-driving vehicles are increasingly being used for repetitive or dangerous
jobs, leading to more innovation and growth in this field.

At the same time, the idea of having multiple robots work together has become more
popular. This approach involves coordinating several robots to work as a team, which
makes them more efficient by dividing big tasks into smaller, easier ones. They can work
on these smaller tasks at the same time, which speeds up the process and improves results.
This team approach is especially useful in urgent situations, like in search and rescue
missions after disasters. For example, during the earthquake in Turkey [9], teams of
drones and mobile robots were sent to search through damaged buildings to find people.
This method reduces the risk to human rescuers by using robots in dangerous indoor
places.

9



Additionally, having many robots work together to create a single, detailed map of
an environment is important. This combined map helps people understand the area better
and facilitates informed decision-making and navigation.

In summary, the capability of multi-robot systems to simultaneously manage various
tasks is essential in contemporary robotics. This dissertation examines the functioning of
these systems, their advantages, and innovative methods to fully utilize their potential in
exploring unfamiliar environments.

2.1 Contribution and Structure

2.2 Contribution
The primary contributions of this dissertation are diverse, showing the broad scope of the
research in multi-robot exploration systems. Firstly, the thesis introduces an innovative
architecture for a distributed multi-robot fleet, designed to enhance the exploration and
mapping of unfamiliar environments. This design includes a new way of using drones as
messengers to overcome common issues with how far robots can communicate.

Secondly, the research contributes a scalable exploration system that integrates advanced
SLAM techniques within a multi-robot framework. By leveraging the collaborative
capabilities of ground robots equipped with LiDAR sensors and aerial drones, the sys-
tem demonstrates improved efficiency in creating detailed and accurate merged maps.
These maps are vital for providing operators with a comprehensive view of the explored
environment, significantly aiding decision-making processes.

Furthermore, this work offers a comparative analysis of two distinct exploration trials,
operating robots independently versus collaboratively with shared data. The knowledge
gained from these experiments provides important information about how multi-robot
systems operate, especially how sharing information affects the efficiency of their explo-
ration.

Lastly, the dissertation provides a foundation for future research directions, suggesting
enhancements in communication protocols and the development of specialized algo-
rithms for collaborative decision-making. These contributions not only serve to advance
the field of mobile robotics but also have the potential to inform real-world applications
where multi-robot systems can be deployed to achieve efficient and effective exploration
outcomes.
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2.3 Structure
Chapter 2, Introduction: This chapter introduces the thesis’s central theme and research
goals. It gives a concise summary of the study’s importance and extent, establishing a
base for the chapters that follow.

Chapter 3, Literature Review: This chapter provides a thorough review of the lit-
erature related to the thesis’s focus, particularly SLAM (Section 3.1) and multi-robot
exploration (Section 3.3). It outlines previous studies, pinpoints existing knowledge gaps,
and sets the stage for the thesis’s research questions.

Chapter 4, Background and Theory: Delving into the theoretical aspects, this chapter
explores the foundational concepts crucial to the research. It includes discussions on ROS
usage (Section 4.1), selecting the optimal SLAM technique (Section 4.2), Navigation
Theory(Section 4.3), and Exploration Theory (Section 4.4).

Chapter 5, System Description and Design: This chapter provides a detailed de-
scription of the proposed system’s structure and design, focusing on key components
such as the drones, ground robots, and the operator base, and their interplay. It outlines
how this design aligns with the objectives of the research.

Chapter 6, Implementation: This section addresses the practical implementation of the
proposed system, including the Gazebo simulation environment and different trial setups.

Chapter 7, Results and Discussion: Here, the outcomes of the system implemen-
tation are showcased. The chapter evaluates the results and discusses their implications.

Chapter 8, Conclusion: Summarizing the research’s main discoveries, this final chapter
reflects on the study’s objectives and achievements. It also proposes directions for future
research.
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3 Literature review
Simultaneous Localization and Mapping (SLAM) is a fundamental problem in robotics
and computer vision that involves creating a map of an unknown environment while si-
multaneously estimating the location of the robot(s) within that environment [10]. SLAM
has numerous real-world applications, including autonomous vehicles, augmented re-
ality, and Unmanned Aerial Vehicles (UAV). In recent years, collaborative UAVs and
multi-robot systems have emerged as promising areas of research that combine multiple
robots or UAVs to accomplish complex tasks such as environmental monitoring, search
and rescue operations, and disaster response [11].

Collaborative UAVs and multi-robot systems require robust and efficient SLAM al-
gorithms to achieve accurate and reliable mapping and localization in dynamic and
unknown environments. Employment of several robots rather than one robot can acceler-
ate numerous tasks such as exploration and mapping of unknown environments, or enable
a team of robots to accomplish a task where each robot has a unique specialization [12].
However, The use of multiple robots introduces new challenges such as coordination,
communication, cooperation, and control among the robots, which must be addressed for
successful collaboration among a fleet of robots [13] [14]. The development of effective
SLAM algorithms and techniques for collaborative UAVs and multi-robot systems is
critical for advancing the field of robotics and enabling these systems to be deployed in
various real-world applications.

This literature review aims to provide an overview of SLAM techniques and specif-
ically the background in Visual Simultaneous Localisation and Mapping (VSLAM),
Light Detection and Ranging (LIDAR), and Simultaneous Localisation and Mapping
(SLAM). Apart from that, Collaborative Simultaneous Localisation and Mapping (C-
SLAM) in the context of multi-robot systems and multi-robot exploration are discussed.
By understanding the current state of the art in SLAM for collaborative UAVs and
multi-robot systems, a research gap can be defined to improve and optimise these sys-
tems to better equip them with the technology needed to accomplish complex tasks,
ultimately improving efficiency and reducing costs in various fields such as agriculture,
transportation, and logistics.

3.1 SLAM
Robot mapping and localization is a complex perception problem that uses SLAM
techniques to solve the issue. It can be divided into two separate parts which are
front-end and back-end. The front-end SLAM algorithm is where the raw sensor data
is fed for processing to obtain feature extraction, data association, and loop closing.
Whereas, the back-end algorithm produces and optimizes the robot location and map
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estimation [7]. The SLAM problem was discussed in [15] and [16] using classical
solution methods. Since that time, SLAM techniques have been extensively researched
for decades and many different SLAM algorithms have been proposed. Visual SLAM
and LIDAR-based SLAM are two widely used SLAM techniques, each with its own
strengths and weaknesses. Visual SLAM relies on cameras to estimate the robot’s pose
and environment, while LIDAR-based SLAM uses laser sensors to generate a 2D or 3D
point cloud of the surroundings.

3.1.1 VSLAM

VSLAM has seen significant advances in recent years, due to its low cost, low power
consumption, lightweight sensors, and easy integration with deep learning-based methods
[12] [17]. These benefits make it a viable option to incorporate Visual SLAM systems
onto micro-ground or aerial mobile robots. Due to these reasons, Hayyan Afeef Daoud
[18] developed a VSLAM algorithm, Oriented FAST and Rotated BRIEF Simultaneous
Localisation and Multi Mapping (ORBSLAMM) that is based on the popular monocular
Oriented FAST and Rotated BRIEF Simultaneous Localisation and Mapping (ORB-
SLAM) [19] algorithm and integrated a monocular camera using a Parrot Bebop Drone
[20]. Parrot Bebop Drone is a Micro Aerial Vehicle (MAV) for indoor mapping and
exploration. Although ORBSLAM is a VSLAM solution that can be performed using
only monocular cameras, depth measurement is not observable from just one camera [19].
Therefore, in order to solve or mitigate this issues, the creator of ORBSLAM developed
a modified version of ORBSLAM and proposed ORBSLAM2 which utilizes a setup of
stereo or an RGB-Depth (RGB-D) camera allowing for a more robust VSLAM solution
[17].

3.1.2 LIDAR SLAM

LIDAR-based SLAM has been widely used in various applications, such as autonomous
driving and robotics. LIDAR sensors enable more accurate and robust mapping of the
environment, as it is less affected by lighting and environmental conditions than visual
SLAM. Apart from that, LIDARs are valued for their high measurement range and the
ability to estimate the depth of observed objects with highly detailed data [21]. The
2D LIDAR systems are used for indoor navigation and complex 3D LIDAR systems
are used for outdoor navigation [22]. Advances in recent research have also focused on
multi-sensor fusion and semantic mapping to improve the accuracy and robustness of
the maps by combining the LIDAR sensors with inertial measurement unit (IMU) or
vision sensors such as cameras [23]. However, LIDAR sensors are in general heavy and
increase the size of the robot, and the cost of such sensor remains high compared to a
visual-based SLAM system [24].
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3.1.3 Comparison of Visual SLAM and LIDAR-based SLAM

Visual SLAM and LIDAR-based SLAM have their respective strengths and weaknesses.
Visual SLAM is faster, cheaper, and more versatile, while LIDAR-based SLAM is more
accurate, robust, and less affected by lighting and environmental conditions. The trade-
offs between these two techniques depend on the specific application, and researchers
have explored the integration of both techniques to improve overall SLAM performance.
The use of cameras and LIDAR sensors together can improve mapping accuracy and
robustness, especially in dynamic and complex environments. For example, Petráček [25]
discusses that for large-scale exploration of caves, an RGB-D-based SLAM approach is
sub-optimal compared to a LIDAR-based SLAM due to limited range and field of view
(FoV). However, equipping RGB-D cameras that can complement the LIDAR system
enables to fill in the blind spots of the LIDAR system. Additionally, Lee, Har and Kum
[26] proposed a system integrating a Hokuyo LIDAR with an Intel Realsense Infrared
(IR) Depth camera to find victims in search and rescue missions as fusing these sensors
together helped to offset their weaknesses.

3.2 Collaborative SLAM (C-Slam)
C-SLAM is an extension of single-robot SLAM that involves multiple robots working
together to generate a map of an unknown environment [14]. C-SLAM has numerous
advantages over traditional SLAM, including increased efficiency, redundancy, perfor-
mance, and robustness as each agent can allocate the workload among them reducing the
computational power of the individual agent [27]. However, Aitken [7] and Saeedi [14]
categorizes the complex multi-robot or C-SLAM problems as:

• Which data will be shared among the agents?

• How is the data shared among the agents?

• Where will the data be processed?

Concerning the processing of the data, C-SLAM processing can be broadly classified into
three types: centralised, decentralised, and distributed. Centralised C-SLAM processing
involves all robots sending their sensor data to a central server such as a ground station
computer or a cloud-based server, fusing the data, and generating a map. On the other
hand, decentralised C-SLAM processing involves robots communicating with each other
and fusing their sensor data locally to generate a map. Additionally, distributed data
fusion processing utilises sensor data that is processed locally, and then they are fused
in a centralised processing node [7],[28],[29], [13], [23], [14]. Among these methods,
decentralised C-SLAM is more robust and fault-tolerant, as it does not rely on a central
server, but can be more challenging to implement due to the need for communication
between robots [12].
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However, the choice of a processing method for C-SLAM depends on various factors,
including the specific application, the number and distribution of robots, the communica-
tion and computation resources available, and other constraints.

Centralised processing can provide a globally consistent map and can be effective
in scenarios where there is a single central node with high computational power. For
example, Forster[27] proposed a method where the task of executing a centralised SLAM
system is delegated to a ground station. The MAVs handle low-level tasks, while the
ground station performs higher-level tasks such as mapping and loop-closure detection.
Each MAV estimates its motion using onboard visual odometry, and the relevant data
is sent to the ground station. The ground station runs a Collaborative Structure from
Motion (CSfM) system to create individual maps for each MAV and merge them together.
The design enables the system to save processing power and require much less transmis-
sion bandwidth among the MAVs. However Cieslewski, Choudhary, and Scaramuzza
[12] mention that having a centralised SLAM system must always rely on the central
node to be reachable, always be in stable network connection and scale sufficiently in
computational power and bandwidth.

Distributed processing can provide the benefits of both centralised and decentralised
processing, allowing for global consistency and fault tolerance while leveraging the scala-
bility of decentralised processing. However, it may require more sophisticated algorithms
and communication protocols to ensure effective collaboration among the agents. For
example, Lajoie [30] developed a C-SLAM algorithm, Distributed, Online, and Outlier
Resilient Simultaneous Localisation and Mapping (DOOR-SLAM) to be implemented
in a distributed SLAM system. It relies on peer-to-peer communication between each
robot to perform either single-robot SLAM when no teammates are nearby or distributed
SLAM protocol during a rendezvous procedure using Robot Operating Software (ROS)
as the middleware and BUZZ [31] which is a scripting language specialised for multi-
robot programming. The author ran an experiment using two quad-copters equipped
with stereo cameras flying over a football field and found that the back-end transmission
power requirements were improved by roughly 50% compared to a centralised system
setup.

Decentralised processing can provide better fault tolerance and can be more scalable, as
the processing load is distributed among multiple robots or nodes. For example, Hao
Xu[23] proposed a novel Decentralised and Distributed Simultaneous Localisation and
Mapping (D2SLAM) that performs the front-end and back-end totally among each UAV
without a central node. The map-merge process in D2SLAM merges only the coordinate
system data between the drones while the robots keep their own sparse map. The result of
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this SLAM system shows a better state estimation accuracy compared to DOOR-SLAM
[30] which is a distributed SLAM system. Despite the great potential of decentralised
SLAM systems, the author mentions a few limitations with the system such as the scale
growth being limited by the front-end computing capabilities of the drone.

Therefore, the best processing method for C-SLAM depends on the specific requirements
and constraints of the application, and a careful evaluation of the pros and cons of each
approach is necessary to make an informed decision.

3.3 Multi-Robot Exploration
Schack [32] describes a concept related to robotic exploration in uncertain and hazardous
environments, where multiple robots work together to map an unknown area. The prin-
cipal emphasis of this research resides in the optimization of exploration through the
utilization of sub-groups within a swarm of autonomous robots, designated for the task
of exploration and mapping. This strategic approach introduces an inherent adaptability,
where malfunctioning robots pose minimal disruption, given that other robots within the
sub-group swarm seamlessly assume their role. In essence, the individual significance of
each robot diminishes, as they remain readily replaceable by their counterparts within
the swarm group.

The proposed methodology in [32] operates on the premise of sub-teams advancing
to the exploration frontiers, where recursive planning is based on the newfound spa-
tial information. As these sub-teams converge at rendezvous points, observations are
systematically relayed to the base station, effectively consolidating the collective insights.

In light of the prevailing condition where a substantial portion of information origi-
nates from uncharted territories, the reward evaluation is tailored accordingly. Notably,
the evaluation focuses on the unknown space’s reward rather than encompassing the
entirety of the trajectory, a choice that reinforces the scalability of the approach. In
an effort to estimate the maximum potential reward stemming from the exploration of
unknown spaces, the unknown expanse is methodically segmented into distinct frontier
regions. Nonetheless, this approach mandates the utilization of a substantial number of
robots, which, in turn, introduces potential challenges to effective robot management and
the pragmatic feasibility of the associated costs incurred by deploying such a system.

Cesare[12] aims to enhance the efficiency of exploration and mapping in the context of
multi-UAV exploration within indoor environments. The research confronts challenges
associated with unreliable communication and limited battery life, focusing primarily
on scenarios involving Unmanned Aerial Vehicles (UAVs). The central innovation of
this work lies in the integration of four distinct operational states: ”explore,” ”meet,”
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”sacrifice,” and ”relay.” This integration aims to optimize the processes of exploration,
information exchange, and collaborative behaviours among the UAVs.

The experimental phase of this research involved the utilization of two cost-effective
autonomous UAVs. These UAVs were tasked with exploring the environment using a
frontier exploration algorithm. Communication between the UAVs played a pivotal role
in determining exploration paths, leveraging the capabilities of the frontier exploration
algorithm. As the UAVs’ battery levels reduce, they autonomously returned to their home
base. During this phase, they shared their respective maps, which were subsequently
merged to create a comprehensive representation of the environment.

The research’s core contribution lies in its novel approach to optimizing exploration
strategies, enabling effective communication and coordination among UAVs, and ad-
dressing the challenges posed by resource constraints. The integration of exploration,
communication, and collaboration states exemplifies the study’s innovative approach to
enhancing the performance of multi-UAV exploration in indoor environments.

3.4 Summary
This literature review serves as the foundational framework for the master’s dissertation,
focusing on the development of a multi-robot exploration system. The review initiates by
emphasizing the significance of Simultaneous Localization and Mapping (SLAM) within
the realm of robotics, particularly in the context of multi-robot systems and Collaborative
UAVs. The review acknowledges the need for robust SLAM algorithms in these systems
due to their potential applications across various domains, including environmental
monitoring and disaster response

The literature review delves into the specifics of SLAM techniques, with a specific
focus on Visual SLAM (VSLAM) and LIDAR-based SLAM, discussing their respective
strengths and limitations. By comparing these techniques, the review emphasizes the
trade-offs involved and highlights the potential advantages of integrating them to enhance
mapping accuracy and robustness. The analysis then extends to Collaborative SLAM
(C-SLAM), shedding light on its inherent advantages, complexities, and processing
methodologies. The exploration encompasses centralized, decentralized, and distributed
processing methods, along with their implications for multi-robot collaboration and fault
tolerance.

Moreover, the review explores the concept of multi-robot exploration, centring on
optimization-based exploration through the utilization of sub-teams within a swarm of
robots. The discussion takes awareness of the challenges linked with communication,
resource limitations, and cost-effectiveness in deploying such systems.
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An additional study highlights the efficiency of multi-UAV exploration within indoor
environments, underscoring the integration of exploration, communication, and collabo-
ration phases.

In essence, this comprehensive literature review constructs a profound understanding of
SLAM techniques and their relevance within collaborative UAVs and multi-robot systems.
It addresses the intricate nuances of multi-robot exploration and highlights existing gaps
and challenges in the field. Through this critical analysis, the review paves the way for
the dissertation’s central aim to design and implement a multi-robot exploration system
in an uninterrupted and time-efficient manner.
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4 Background and Theory
This chapter explains the robotic concept and theory used as a prerequisite to meet the
dissertation objective needs, building on a system depending on these robotic blocks to
develop a multi-robotic exploration fleet management system. The particular packages
and algorithms explained and used throughout the dissertation are due to the knowledge
and understanding gained from the literature review section. There are 4 main robotic
concepts which will be applied to facilitate the objective.

• ROS2

• SLAM using the SLAM Toolbox

• Navigation using the NAV2 stack

• Exploration using Frontier Exploration algorithm

4.1 ROS Theory
This section provides an in-depth overview of Robot Operating System 2 (ROS2) and
its significance in the context of the master’s dissertation. Additionally, it outlines the
reasons for utilizing ROS in the research and explores the integration of Gazebo simula-
tion for the TurtleBot3 robot. The combination of ROS and Gazebo simulation offers
a powerful and efficient platform for developing, testing and validating autonomous
robotics applications.

ROS 2 is an advanced middleware framework designed for building and controlling
robotic systems [33]. It offers a collection of tools, libraries, and conventions that make
it easier to develop complex robotic applications. Unlike its predecessor, ROS 1, ROS 2
was developed with a focus on addressing the limitations of ROS 1 while introducing
new features, improvements, and enhanced modularity to meet the evolving needs of
robotics.

ROS 2 applications are structured as modular units known as nodes. Each node is
a separate process responsible for performing specific tasks. Nodes communicate with
one another by publishing and subscribing to topics, forming a publish-subscribe ar-
chitecture. The concept of a node lifecycle management system adds an extra layer of
control over node initialization, termination, and transitions between different states
In ROS 2, communication between nodes occurs via topics. Topics are named channels
through which nodes publish messages (data) or subscribe to receive messages. This
approach of decoupling publishers from subscribers allows for flexible and efficient
communication between various components of a robotic system.
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ROS 2 employs a request-response communication model through services. A ser-
vice consists of a client and a server. The client sends a request to the server, which
processes the request and responds accordingly. This mechanism is particularly useful
for scenarios requiring synchronous communication, such as requesting sensor data from
another robot.

The action system provides a mechanism for managing long-running tasks with asyn-
chronous feedback. It combines the request-response nature of services with progress
feedback akin to topics. Actions are initiated by action clients and executed by action
servers, allowing for multi-step operations and real-time feedback during complex explo-
ration tasks.

ROS 2 incorporates a parameter server that acts as a centralized configuration man-
ager for nodes. Parameters are key-value pairs that nodes can access and modify during
runtime. This feature is invaluable for configuring robot behaviours dynamically, a
necessity in multi-robot exploration where each robot might need individualized settings
based on its roles and capabilities.

ROS 2’s enhanced time management system, compared to ROS 1, provides more accu-
rate synchronization in real-time and distributed systems. This is particularly important
in multi-robot scenarios where synchronized actions and coordination are crucial for
successful exploration.

The ROS 2 launch system simplifies the initiation of multiple interconnected nodes.
It replaces the ROS 1 roslaunch tool and simplifies the management of complex robotic
applications. This becomes invaluable in multi-robot exploration projects where or-
chestrating the launch and coordination of multiple robots and their respective nodes is
essential.

ROS 2 provides a robust and versatile platform for experimenting and structuring com-
plex robotic projects, especially for multi-robot exploration missions as the likes of
this master’s dissertation. The modular nature of nodes, the flexible communication
infrastructure of topics, services, and actions, and the centralized parameter management
allow researchers to develop and test intricate exploration strategies involving multiple
robots. ROS 2’s launch system simplifies deployment and orchestration, facilitating
the coordination of robotic teams exploring unknown environments. Overall, ROS 2
equips the master’s dissertation with the tools needed to delve into the complexities of
multi-robot exploration, enabling the development of innovative solutions that push the
boundaries of robotic cooperation and navigation.
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Gazebo/RVIZ

Gazebo [34] and RViz [35] constitute two widely employed simulation and visualization
utilities within the ROS2 framework. These tools assume critical roles in the evaluation
and verification of robotic algorithms and functionalities, including those implemented
on the TurtleBot3 platform.

Gazebo serves as a versatile and potent robotic simulation environment, facilitating
the creation and simulation of intricate robotic systems within a three-dimensional vir-
tual realm. Its capabilities encompass physics-based simulations of robots, sensors,
and environments, rendering it a valuable instrument for the trial and development of
robotic applications before real hardware implementation. Gazebo meticulously emulates
physics, dynamics, and inter-object interactions, thereby yielding realistic robotic move-
ments and behaviors. This utility further extends to the simulation of diverse sensors,
including LIDAR and IMU sensors, which are particularly pertinent in the context of
this dissertation.

An additional facet of Gazebo is its capacity to formulate custom environments or
import real-world maps, thereby facilitating simulation across a spectrum of scenarios.
It’s worth noting that Gazebo’s seamless integration with ROS2, enables interaction and
control of simulated robots via ROS nodes and topics. Notably, one can instantiate a
TurtleBot3 model within Gazebo, thereby accessing simulated sensors, actuators, and
kinematic attributes. This environment affords the capacity to assess navigation, SLAM
algorithms, and other behaviors across diverse settings, all without subjecting physical
robots to potential risks.

Conversely, RViz serves as a visualization tool that furnishes a three-dimensional graph-
ical interface to depict an array of sensor data, robot statuses, and maps. This tool
assumes paramount significance in the visualization and debugging of robotic applica-
tions, particularly those reliant on sensor data for navigation or mapping tasks. RViz
effectively displays various types of data, such as point clouds, laser scans, maps, and
trajectories, within an intuitive interface. Users can seamlessly configure and personal-
ize visualizations to meet specific data requisites. Furthermore, RViz affords real-time
representation of the robot’s present state, encompassing its position, orientation, and
joint angles. Deeply integrated with ROS, RViz seamlessly interfaces with ROS topics,
facilitating the visualization of data disseminated through these channels. Consequently,
users can effectively visualize sensor data, including LIDAR scans, camera images, and
IMU measurements, within an emulated real-world context. This includes real-time
displays of the robot’s trajectory, position, and pertinent real-time data.
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These tools constitute pivotal assets for the simulation and visualization of robotic
systems. They provide an efficacious and secure avenue for the development, testing,
and validation of diverse algorithms and behaviours, all preceding physical hardware
deployment.

4.2 SLAM Theory
Based on existing research and literature, current findings suggest that Pose Graph SLAM
represents the most advanced SLAM algorithm, demonstrating superior performance
compared to alternative algorithms like Extended Kalman Filter (EKF) and Particle Filter.
This is particularly noticeable in the context of filter-based systems versus smoothing-
based systems. In order to facilitate the implementation of Pose Graph SLAM, the
dissertation will employ a widely adopted SLAM package known as the Slam Toolbox
[36]. This package, deeply rooted in graph-based SLAM principles, is extensively used
within the ROS2 framework, as elaborated upon in subsequent sections. The Slam
Toolbox seamlessly aligns with the objectives of this dissertation due to its inherent
features and tools, ensuring a cohesive integration with the research objectives. In the
following sections, the dissertation will delve into a comprehensive background on the
Slam Toolbox, explaining its core functionalities, and its essential role in the context of
Pose Graph SLAM.

4.2.1 Pose Graph SLAM

Pose Graph SLAM is a variant of Simultaneous Localization and Mapping (SLAM) that
focuses on solving the problem of estimating both the robot’s trajectory (pose) and the
map of the environment simultaneously. In traditional SLAM, the robot’s trajectory and
the map are estimated using filtering techniques like Extended Kalman Filter (EKF) or
particle filters. However, in Pose Graph SLAM, a graph-based optimization approach is
used to jointly optimize the robot’s poses and the map.

The key idea behind Pose Graph SLAM is to represent the problem as a graph as
depicted in Figure 1, where nodes represent the robot’s poses (positions and orientations)
at different time steps, and edges represent measurements or constraints between these
poses. These constraints can come from various sources, such as odometry, loop closures,
or observations of landmarks in the environment.

The workflow of Pose Graph SLAM typically involves many steps. First, the robot
collects sensor data, such as odometry, laser scans, or camera images, to estimate its
poses and perceive the environment. Data association involves matching sensor measure-
ments with the robot’s poses to create the initial graph structure. Then, the initial pose
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graph is constructed based on the robot’s odometry and sensor measurements. The graph
consists of nodes representing robot poses and edges representing constraints between
connected poses.

Figure 1. A pose-graph representation of a SLAM process. Every node in the graph
corresponds to a robot pose. Nearby poses are connected by edges that model spatial
constraints between robot poses arising from measurements [1]

Loop closures occur when the robot revisits a previously visited location. Loop closure
detection identifies these revisits by comparing features or signatures from the sensor
data collected at different time steps. When a loop closure is detected, a new edge is
added to the graph, connecting the relevant nodes and constraining their relative positions,
which helps correct drift errors and improve map consistency.

The core of Pose Graph SLAM is the graph optimization process, where the goal
is to find the most likely poses and maps that satisfy all the constraints in the graph. The
optimization process adjusts the poses and map to minimize the errors in the constraints
while considering the uncertainty in the sensor measurements.

Once the graph optimization is performed, the optimized poses and map are used to
update the robot’s trajectory and the map of the environment. The updated map represents
the robot’s belief about the surroundings.

Finally, Pose Graph SLAM is an iterative process. The loop closure detection, graph
optimization, and map update steps are repeated as the robot explores more of the envi-
ronment, and new loop closures are detected. This iterative refinement process improves
the accuracy and consistency of the estimated trajectory and map over time.
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4.2.2 SLAM TOOLBOX

The ”Slam Toolbox” [36] a collection of specialized tools and functionalities designed
for 2D Simultaneous Localization and Mapping (SLAM), has been developed by Steve
Macenski, and adapted specifically for integration within the ROS2 ecosystem [37].The
inclusion of the Slam Toolbox is of considerable significance within the context of this
master’s dissertation due to its highly advantageous features that align with the research
objectives. This relevance is explained from the compatibility of the Slam Toolbox with
Turtlebot3, a robotic platform equipped with an integrated 2D LiDAR sensor, encour-
aging seamless synergy between the toolkit’s 2D SLAM capabilities and the robot’s
hardware.

Furthermore, the utilization of the Pose Graph SLAM algorithm, as elaborated upon in
the preceding section, further reinforces the merit of incorporating the Slam Toolbox
into this dissertation. A notable attribute of the Slam Toolbox is its competence in
serializing and deserializing the generated maps resulting from the SLAM process for
individual robots. This capability assumes particular importance as it facilitates the
storage of map data in a serialized format, enabling subsequent retrieval, deserialization,
and application to either the same or different robotic platforms. This characteristic
distinctly sets the Slam Toolbox apart, as other available SLAM packages or algorithms
lack this trait. Unlike alternative solutions that exclusively permit map preservation for
the sole objective of localization use cases, and restrict from updating the map, the Slam
Toolbox empowers the retention and subsequent transfer of maps, aligning seamlessly
with one of the core objectives of this dissertation.

An experiment was conducted to build a map of a virtual environment using ROS2
and the SLAM Toolbox to understand how to implement Pose Graph SLAM and SLAM
Toolbox within ROS2. Initially, This environment was entirely unexplored. Figure 2
depicts the robot’s starting pose and the initial map. As the robot explores, new nodes
and edges emerge, as shown in Figure 3. In this figure, the red dots represent nodes, and
the blue lines link them as edges. Moving through the area updates the map, gathering
more information. Figure 4 presents the complete map, with all nodes and edges after
the entire environment has been explored.
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Figure 2. Pose Graph SLAM Initially
Mapped

Figure 3. Pose Graph SLAM Partially
Mapped

Figure 4. Pose Graph SLAM Fully Mapped
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4.3 Navigation Theory
The Navigation2 (nav2) stack [38] in ROS 2 uses a combination of algorithms to nav-
igate from the robot’s current position to a goal position along a path. The navigation
process involves both global and local path planning, as well as obstacle avoidance and
localization. The primary algorithms used in the navigation process are as follows:

The global path planning algorithm is responsible for finding an initial path from the
robot’s current position to the goal position. One of the commonly used global path
planning algorithms in the Navigation2 stack is A* (A-star). A* is a popular graph search
algorithm that guarantees an optimal path in terms of the least cost. The algorithm uses a
heuristic to estimate the cost from each node in the search space to the goal, enabling it
to find an efficient path. A vital addition is the boundary layer, which marks areas around
obstacles and influences the path planning process as depicted in Figure 6.

After establishing the global path, the responsibility shifts to the local path planning
algorithm, which guarantees a seamless and obstacle-free progression along the route.
The local planner uses different algorithms, such as DWA (Dynamic Window Approach)
and TEB (Timed Elastic Band), the local planner computes velocity commands that guide
the robot along the predefined global path while adeptly avoiding obstacles in real-time.
As depicted in Figure 7, the local planner interfaces with the local costmap, which
provides a detailed representation of the robot’s immediate surroundings. Considering
the boundary layer, nearby obstacles, and moving barriers, the local planner changes the
path as needed, making sure the navigation is both safe and effective.
Figure 8 encapsulates the fusion of global and local planning layers. The waypoints from
the global plan are handed over to the local planner, which incorporates information
from the local costmap to guide the robot’s trajectory in real-time. This cooperative
approach facilitates effective navigation by navigating around obstacles while adhering
to the desired path.

To ensure accurate navigation, the utilization of the Adaptive Monte Carlo Localization
(AMCL) algorithm becomes imperative. Employing particle filtering, a sophisticated
mathematical technique, AMCL undertakes the task of estimating the precise position
of the robot within a given map. This process can be visually seen in Figure 9, wherein
a collection of distinct green dots signifies potential robot positions. With each itera-
tion of navigation, the gradual convergence of these individual green dots emerges to
AMCL’s refining precision as depicted in Figure 10. This convergence demonstrates
the algorithm’s increasing confidence in confirming the actual pose of the robot. This
iterative refinement process adds to AMCL’s seamless integration of data collected from
laser scans and odometry readings, allowing the algorithm to consistently recalibrate the
robot’s orientation and location.
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Figure 5. 2D Occupancy Grid Map of
the Environment Figure 6. Global Planner

Figure 7. Local Planner of the Robot Figure 8. Local and Global Planner
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Figure 9. AMCL at the Initial Pose the
Robot

Figure 10. AMCL Algorithm after navi-
gating for few seconds

4.4 Exploration Theory
Frontier exploration is a robotic exploration strategy that aims to efficiently explore and
map unknown environments by identifying and visiting frontier points. Frontier points
are locations on the boundary between explored and unexplored areas, representing the
frontier of the known environment. The concept of frontier exploration is commonly
used in robotic exploration scenarios, such as mapping an unknown environment or
searching for specific targets.

The exploration process begins with the robot’s sensors, such as cameras or laser scanners,
collecting data about the surrounding environment. The robot creates a map of the known
areas based on the sensor data, using techniques like SLAM (Simultaneous Localization
and Mapping) to simultaneously localize itself and build a map of the environment.
Once the robot has a map of the explored areas, it uses this information to identify frontier
points. Frontier points are locations on the boundary between the known and unknown
areas (Figure 11). These are areas that the robot has not yet explored, and visiting them
could potentially reveal new information about the environment.

The robot evaluates the potential frontier points based on certain criteria, such as dis-
tance, accessibility, and information gain. Frontier selection methods may consider
factors like the proximity of the frontier to the robot’s current position, the amount
of unexplored space beyond the frontier, and the likelihood of finding interesting or
valuable information. Once the frontier points are identified and ranked, the robot uses
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path planning algorithms to find the most efficient paths to reach these frontiers while
avoiding obstacles. The robot plans its trajectory to visit one or multiple frontier points,
maximizing its coverage of the unexplored areas.

The robot executes the planned path and reaches the selected frontier points. Upon
arrival at a frontier, the robot may further assess the area with its sensors and update
the map as needed. It may also revisit certain frontiers if there is a need for additional
information.

Frontier exploration is typically an iterative process. As the robot explores and up-
dates its map, new frontier points may become visible due to changes in the environment.
The robot continually detects and selects frontiers to explore until it has sufficiently
covered the target area or achieved its exploration goals (Figure 12).

Frontier exploration strategies help robots explore unknown environments in a systematic
and efficient manner, ensuring that they focus on the most promising and informative
areas. This approach is widely used in various robotics applications, such as search and
rescue missions, environmental monitoring, and mapping uncharted territories.

Figure 11. Initialization of Frontier Ex-
plore

Figure 12. Map Coverage after Frontier
Exploration
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5 System Description and Design
Building upon the theoretical underpinnings introduced earlier, This chapter will elab-
orate on the architecture crafted for the implementation of a cooperative multi-robot
mapping system. This design, demonstrated using a scenario with two ground robots,
is inspired by the principles of collaborative exploration and efficient data sharing. It
underpins the primary objective of this dissertation: the development of a system for con-
tinuous, coordinated mapping by multiple robots. While the current simulation scenario
involves two ground robots, the architecture is scalable and can potentially be expanded
to accommodate ’n’ number of robots for larger-scale operations.

In this scenario, two ground robots and an associated pair of drones are deployed for
exploration. The ground robots, equipped with advanced LiDAR sensors, are responsible
for mapping the environment. Each ground robot is linked to a dedicated drone that plays
a pivotal role in data transmission. At predetermined intervals, these drones rendezvous
with a third drone connected to the operator base. This meeting point serves as a hub for
exchanging map data, ensuring continuous information flow and map updating.

A critical aspect of this system is managing the exploration territory of each ground robot
to avoid redundant mapping. To this end, the drones not only transmit their respective
robot’s map data to the base but also receive the map data of the other robot. Upon
returning to their ground robots, they share this new information, enabling each robot to
update its exploration strategy based on the combined knowledge of the terrain.

When the third drone reaches the operator base, it transmits the collected map data,
enabling the base to merge the maps received from the drones. This merged map offers a
comprehensive view of the explored area, significantly enhancing the understanding of
the environment. The base station’s role is crucial in synthesizing individual robot maps
into a singular, unified representation of the mapped area.

This system’s design guarantees an uninterrupted mapping operation by both ground
robots at all times. With the drones dedicated to data transmission, they enable the
ground robots to persist in their exploration tasks seamlessly. This ongoing cycle of
mapping, coupled with the constant exchange and updating of data, significantly boosts
the overall efficiency of the mapping. The Implementation section will delve into the
specifics of implementing this system.
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5.1 System Design of Exploring Robot
Designing an autonomous exploring robot entails the integration of several critical com-
ponents to enable effective navigation and environmental exploration. The robot’s core
functionalities hinge on Simultaneous Localization and Mapping (SLAM), to develop
a comprehensive map of the surroundings and continuously refine the robot’s position
estimation.

This map serves as the foundation for the subsequent components. Frontier Explo-
ration plays a pivotal role in identifying unexplored regions, determining potential points
of interest, and calculating the viability of reaching these frontiers. This involves a careful
analysis of factors like distance, terrain, and obstacles. The subsequent Motion planning
phase generates a collision-free trajectory from the robot’s current location to the chosen
frontier point. This task employs advanced algorithms such as A* or RRT, which factor
in the robot’s kinematics and environmental constraints. This fusion of SLAM, frontier
exploration, and motion planning orchestrates the robot’s Exploration Strategy, periodi-
cally updating its map, identifying frontiers, and selecting goals for further exploration
based on predefined criteria. The robot’s Obstacle Avoidance mechanisms play a pivotal
role during path execution, dynamically recalculating paths to circumvent obstacles while
staying the course toward the goal. Figure 13 shows a diagram of the different robotic
components to achieve an autonomous exploring robot.

Figure 13. Block Diagram Representation Of Robot Exploration

5.2 ROS Multi-Robot Architecture
The operational workflow is meticulously orchestrated, as represented in the series of
flowcharts Figure 14, Figure 15 and Figure 16. The figures provided delineate the sys-
tematic workflow of a continuous robotic mapping operation.

In Figure 14, ground Robots A and B, paired with their respective drones, perpetu-
ally engage in mapping activities, punctuated by routine checks for action triggers. At
every designated interval T, each robot communicates its collected map data to its affili-
ated drone, which then conveys this information to a predetermined rendezvous point for
data exchange.
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As depicted in Figure 15, the drones utilize their downtime efficiently by recharging
on the ground robots, waiting for their next operational command. Upon receiving the
instruction to assemble, they navigate to the rendezvous point, where they await the
arrival of their counterparts. It is only when all drones have assembled within a certain
communication range that they start the data-sharing process. After this exchange, the
drones return to their links: Drones A and B to Ground Robots A and B for information
dissemination, and Drone C to the Operator Base.

In Figure 16, the Operator Base functions cyclically, echoing the periodic actions of the
drones. With each passing period T, the base dispatches Drone C to the rendezvous point.
Upon its return, the base undertakes the crucial task of merging the maps gathered from
the other robots, thus maintaining a current and comprehensive understanding of the
mapped environment. This cyclical process, carefully illustrated in the figures, ensures a
seamless and efficient collaborative mapping effort, with each component of the system
ground robots, drones, and the operator base performing synchronized tasks vital to the
overarching goal of continuous exploration and data integration.

5.3 Considered Alternative Not Incorporated in the Final Design
In contemplating potential modifications to the current multi-robot mapping architecture,
one plausible alteration is the transition from a multi-drone framework to a singular
drone system. This unique drone would cyclically traverse between each ground robot
and the operator base, serving as the sole conduit for the essential exchange of mapping
data.

However, this approach introduces several challenges that necessitate rigorous con-
sideration and strategic planning. Transitioning to a singular drone framework for
mapping operations could inadvertently decelerate the overall process due to several
logistical complexities. The primary challenge lies in the coordination of one drone with
multiple ground robots, a significant shift from the current multi-drone setup. In the
existing system, each drone is linked to its respective ground robot, efficiently tracking
and returning to it after data exchanges at the central rendezvous point. This efficiency is
primarily due to each drone’s familiarity with its robot’s last reported location.

However, this dynamic changes considerably in a single drone scenario. The soli-
tary drone, tasked with servicing multiple ground robots, faces challenges in quickly
pinpointing and reaching each robot. This challenge is exacerbated when these robots
are actively exploring and changing their positions. To address this, ground robots in
both scenarios are programmed to stay within a communicable range of their last known
positions, a critical feature that ensures the drone can successfully locate each robot upon
its return.
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Yet, the impact of this programming is more pronounced in the single drone model.
Due to its longer travel route, encompassing visits to each ground robot in sequence,
the single drone’s round trip is considerably lengthened. This results in increased wait-
ing periods for the ground robots, as they are required to remain within the range of
their last known position until the drone’s arrival. Such prolonged periods of inactivity
for the ground robots could lead to less efficient mapping operations compared to the
multi-drone system. In the case of multi-drones, the relatively quicker return of each
dedicated drone significantly reduces the idle time for its corresponding ground robot,
thereby maintaining a more continuous and efficient mapping workflow. This contrast
highlights the need for careful consideration of the drone’s travel time and its consequent
effect on the operational efficiency of the ground robots in a single drone mapping system.

Another pivotal aspect to address is the mapping efficiency. In the multi-drone system,
each robot receives updated mapping information from its dedicated drone, including
data collected by other robots, thereby ensuring a cohesive and comprehensive mapping
process. However, with a single drone, there arises a sequential delay in information
dissemination. The ground robot first visited by the drone would not immediately benefit
from the data collected by subsequent robots. This sequential gap could result in less
efficient mapping, as each robot may not have access to the most current collective
mapping data during its exploration phase.

Furthermore, the issue of drone battery life emerges as a significant constraint, par-
ticularly in scenarios involving expansive mapping areas. The solitary drone, tasked with
covering extensive distances to reach each ground robot and returning to the operator
base, might face battery depletion, potentially incapacitating the system’s ability to
maintain continuous mapping operations. This challenge underscores the necessity for
advanced battery technology or alternative strategies like mid-mission charging stations
or swappable battery systems to ensure uninterrupted operation.

In summary, while the concept of a single drone system presents a streamlined and
potentially cost-effective approach, it is imperative to meticulously evaluate and address
these logistical and technical challenges to ensure the system’s efficacy and efficiency in
large-scale mapping operations. Further research and development in drone technology,
particularly in areas of battery longevity and autonomous navigation algorithms, could
play a pivotal role in overcoming these challenges and making the single drone model a
viable alternative in future iterations of the mapping system
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Figure 14. Block Diagram Representation of Each Robot in a Multi-Robot Fleet Explo-
ration System
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Figure 15. Block Diagram Representation of Each Drone in a Multi-Robot Fleet Explo-
ration System

Figure 16. Block Diagram Representation of the Operator Base architecture
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6 Implementation
This chapter focuses on implementing the system design discussed in earlier chapters,
aiming to validate its effectiveness for managing a multi-robotic fleet. The implemen-
tation is carried out through simulation. The simulation phase is a key part of this
master’s dissertation, intended to confirm the effectiveness of the multi-robot exploration
structure designed previously. In this chapter, a detailed methodology for the simulation
experiment is presented step by step.

6.1 Gazebo World Environment
To achieve a lifelike simulation environment conducive to robot exploration, an outdoor
maze setting has been created into Gazebo (Figure 17), serving as the world within which
the TurtleBots3 are tasked to navigate and map.

Here, two ground robots, modelled as Turtlebot3 units, have been initialized at sep-
arate locations within a maze environment. For simulation purposes, and owing to model
constraints, two drones, modeled as SJTU drones, are configured to hover above their
corresponding ground robots, simulating a constant state of readiness to act upon naviga-
tional directives (Figure 17). This aerial positioning, while a deviation from real-world
operational practices, is necessitated by the current simulation parameters. In a practical
real-life application, these drones would ordinarily land on and recharge atop the ground
robots, conserving energy for sustained operation.

Additionally, the simulation environment encompasses an operator base, complete with
an associated drone (Figure 18). This drone’s function is to simulate the critical role of
data relay between the mapping robots and the operational oversight at the base. The
human element within this virtual setup is represented by an avatar, standing in as the
operator who oversees the mapping integration process directly from the base station.
This operator avatar symbolizes the human supervision essential for monitoring the
progression of the mapping exercise and for the amalgamation of the collected data into
a coherent representation of the explored environment.

In the initial phase of the simulation, Two ground robots are placed at different points in
a maze. On standby are three drones, ready to take flight. When the operator signals the
start, the robots activate and start their journey through the maze, as outlined in Figure 14.
As mentioned previously, for the sake of the simulation, the drones follow the ground
robots closely, simulating the real-life scenario where they would be mounted on the
robots for recharging. At a specified time, referred to as time T, the drones converge at
a common meeting point to exchange mapping data (Figure 19). After this exchange,
they return to their respective robots and pass on the updated information. Armed with
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this new data, the ground robots then adjust their maps and set new frontiers to explore,
while the operator watches the combined map evolve in real-time. This process repeats
until the maze is fully explored and there are no new areas left to discover.

6.2 Independent and Collaborative Mapping Trials
To test our mapping strategy, we ran two different trials. Both follow the scenario we
have just described, but they differ in one key aspect: whether or not the ground robots
can see each other’s maps. In the first trial, named the Independent Mapping Trial, each
robot operates on its own, using only its sensors, its known location, and the part of the
map it has created. In the second trial, referred to as the Collaborative Mapping Trial, the
robots have access to each other’s data, thanks to the drones sharing information when
they meet. This means that when the drones return to their robots, they bring back extra
information. This allows the robots to make smarter choices during exploration, avoiding
areas the other has already covered or plans to cover.

However, the second approach presents a challenge. When both robots have access
to identical information simultaneously, there is a potential for them to select the same
region for their next exploration target. To avoid this, the programming must be adjusted
so that one robot is directed to the next nearest unexplored area instead. This ensures
that the exploration process remains efficient, with both robots covering different parts
of the maze without duplication of effort.
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Figure 17. Overhead View of the Gazebo Simulated Environment Featuring the Maze
and Initial Positions of Ground Robots(White) and the Drones(Black) on standby

Figure 18. Simulation Control Station in Gazebo, with the Human Operator Avatar
Overseeing the Mapping Drones and Ground Robots
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Figure 19. Overhead View of the Gazebo Simulated Environment Featuring the Maze
the exploring robots(white) and the Drones(black) at Rendezvous Point

Figure 20. Zoomed View of the Turtlebot3 within the Gazebo Maze, Illustrating the
Robot’s Scale in Relation to the Surrounding Labyrinth Structure
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7 Results and Discussion
This chapter delves into the results obtained from the implementation of the multi-
robotic fleet management system described in the previous section. The primary goal
of the implementation was to validate the system’s functionality and effectiveness in
enabling collaborative exploration and mapping by a fleet of robots. The implementation
objectives include:

• Using multiple robots for exploration and mapping

• Ensuring continuous, uninterrupted mapping operations.

• Establishing a method for communication relaying.

• Generating a merged map from individual robots’ mapping efforts for a compre-
hensive understanding of the environment

7.1 Assumptions
The implementation and the results operate under several essential assumptions. Initially,
it’s assumed that the ground robots in a real-life setting are sufficiently large and equipped
with batteries of considerable capacity, essentially granting them an almost unlimited
operational lifespan for this simulation. Conversely, the drones are not equipped with
unlimited battery life. However, they are configured to periodically land on the ground
robots for recharging, ensuring they consistently have enough battery power for their
operations.

As for communication, it’s assumed to have a certain limited range in the simulation,
set to an arbitrary value for demonstration purposes. In a practical application, the
communication range would vary based on the technology used. Common technologies
like Wi-Fi typically offer a range of up to 100 meters outdoors.

7.2 Results
7.2.1 Results of Independent Mapping Trial: Ground Robots Operating Solo

This section examines the outcomes from the first of two distinct trials conducted to
assess the mapping strategy. This trial, referred to as the Independent Mapping Trial,
involved each ground robot operating in isolation. Relying solely on its own sensors,
known location, and the segment of the map it had individually charted, each robot
navigated the environment without access to the mapping data of its counterpart. The
focus here is to understand the effectiveness and limitations of autonomous mapping
when robots work independently, devoid of collaborative data exchange.
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Figure 21 and Figure 22 display the starting positions of Robot1 and Robot2, respectively,
just before they commence their exploration. As the exploration begins, both robots
update their maps simultaneously. After a certain period, having gathered more mapping
information, it becomes necessary to dispatch the drones to the rendezvous point. The
maps created by each robot before the data-sharing process are depicted in Figures
Figure 23 and Figure 24. Following the completion of the data exchange and the return
of the operator drone to the base, the merged map is then compiled, as shown in Figure 25.

In Figure 28, the merged map depicted does not precisely match the combination of the
maps shown in Figure 26 and Figure 27. This discrepancy is due to the fact that, at the
specific moment captured as time T, the operator base’s drone had not yet returned to
transmit the latest data. Consequently, the integrated map in Figure 28 lacks the most
recent updates that would be included once the drone completes its data transmission.

The red lines shown in some of the images indicate the current destination targets
determined by the Navigation2 (nav2) system for each robot. These lines act as clear
visual cues, indicating the robots’ next intended direction within the maze.

Figure 21. Robot1 Initial Map Figure 22. Robot2 Initial Map
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Figure 23. Independent Mapping Trial:
Map Generated by Robot1 Prior to the
Initial Data Exchange

Figure 24. Independent Mapping Trial:
Map Generated by Robot2 Prior to the
Initial Data Exchange

Figure 25. Independent Mapping Trial: Merged Map after the first rendezvous
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Figure 26. Independent Mapping Trial:
Map Generated by Robot1 after a time
T of exploration

Figure 27. Independent Mapping Trial:
Map Generated by Robot2 after a time
T of exploration

Figure 28. Independent Mapping Trial: Merged Map after a time T
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7.2.2 Results of Collaborative Mapping Trial: Ground Robots Sharing Data

This part of the study focuses on the results from the second trial, named the Collab-
orative Mapping Trial. This trial contrasts with the first by enabling ground robots to
access each other’s mapping data. This data exchange is facilitated through drones
that collect and distribute information during their rendezvous points. With the added
layer of shared data, the robots are positioned to make more informed decisions in their
exploration activities. The primary aim here is to ascertain the enhancements in mapping
efficiency and thoroughness when robots utilize collective information to strategically
avoid overlapping exploratory efforts.

In the simulation, the approach for utilizing data from another robot during explo-
ration involves integrating the second robot’s map with the current robot’s map. While
this method proves effective within the simulation environment, real-world applications
might benefit from alternative strategies that efficiently leverage data from other robots
without directly merging the maps.

One such idea involves creating a layered mapping system where each robot’s map
is maintained separately but referenced against each other. This system would allow each
robot to access and review the other’s map as an overlay, providing additional context
while keeping their primary navigation maps distinct. By doing so, robots can identify
areas already covered by their counterparts and focus on unexplored regions, thereby
avoiding redundant efforts.

This trial begins with the same initial maps as depicted in Figure 21 and Figure 22.
The maps generated by the robots before their first rendezvous are shown in Figure 29
and Figure 30. Additionally, the first merged map, created after this rendezvous, is
presented in Figure 31. The key difference in this trial is that upon returning to their
respective hosts, the drones of Robot 1 and Robot 2 also disseminate the information
gathered from the other robot. The outcomes of this data sharing are illustrated in
Figure 32 for Robot 1 and Figure 33 for Robot 2. Notably, despite sharing the same
map data at that moment, the robots are observed to be selecting distinct goal frontiers
for exploration, as evidenced by the red lines in the images. This highlights the robots’
capability to independently identify and navigate toward different exploration points,
even when operating with shared mapping information.
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Figure 29. Collaborative Mapping Trial:
Map Generated by Robot1 Prior to the
to the first rendezvous

Figure 30. Collaborative Mapping Trial:
Map Generated by Robot2 Prior to the
first rendezvous

Figure 31. Collaborative Mapping Trial: Merged Map after the first rendezvous
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Figure 32. Collaborative Mapping Trial:
Robot1 map after receiving the data
from Robot2

Figure 33. Collaborative Mapping Trial:
Robot2 map after receiving the data
from Robot1

7.3 Comparative Analysis
In the comparative analysis, each of the two trials was conducted multiple times, over five
iterations each, to ensure consistency in the results. A notable difference was observed in
the time taken to complete the maze exploration. On average, the trial employing shared
data between robots completed the maze exploration in about 5 minutes. In contrast,
the trial where robots worked independently, without sharing data, took an average of 8
minutes to complete the same exploration. These average times reflect the differences in
efficiency between the two approaches. Despite these differences in completion time, all
iterations of both trials were performed under the same conditions, with the robots and
drones operating at a predetermined speed and all other variables held constant.

The primary variable between the two trials was the availability of shared data. However,
irrespective of this variable, a random factor influenced the exploration process in both
scenarios. This randomness stemmed from the computational processing speed of the
computer running the simulation. At any given moment, termed as time T, variations in
the computer’s processing speed could lead to different decisions regarding the choice
of the next exploration point or frontier. This phenomenon means that even with two
experiments set up identically in terms of parameters and conditions, the exploration
paths chosen by the robots might differ. This element of unpredictability underscores
the dynamic and complex nature of robotic exploration, highlighting how computational
factors can subtly but significantly affect the outcomes of robotic mapping experiments.
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8 Conclusion
In this final chapter, we will summarize the main points and outcomes of the research on
multi-robot exploration. The focus is on reviewing the development and testing of a new
system for mapping unknown areas using multiple robots. This chapter will look back at
what the research achieved and it’s also a chance to think about what could be done next
in this area of study.

8.1 Assessment of the Multi-Robot Fleet Exploration System
This dissertation has effectively demonstrated the creation and implementation of a
multi-robot fleet exploration system, aimed at navigating and mapping unfamiliar envi-
ronments. Central to this system is the innovative use of drones as communication relays,
which has improved the efficiency of data sharing among robots during exploration. A
key achievement of this system is the generation of a global merged map, offering a
comprehensive view of the explored areas, which is beneficial for human operators in
understanding the environment.

Through simulated experiments and various trials, the functionality and effectiveness of
this system were rigorously tested. These trials focused on different operational modes
of the robots, such as independent and collaborative mapping. The results from these
experiments have shown that the system is capable of conducting exploration missions
without major delays commonly associated with communication issues in multi-robot
settings.

8.2 Future work
This project has successfully devised an operational multi-robot fleet management sys-
tem. However, several limitations and unexplored challenges remain. Thus, a promising
avenue lies in the identification of prospective future enhancements. The following
paragraphs delve into the prospective avenues for refinement that can be seamlessly
integrated to augment the system developed within this dissertation.

A significant enhancement that could be implemented in future iterations of the robotic
system is the development of a communication protocol for the robots to share their
respective positions. This feature would be particularly beneficial in scenarios where the
environment becomes more constricted or narrow. By continuously exchanging location
information, the robots could actively avoid collisions between each other, ensuring
smoother and safer navigation. This improvement would not only increase the efficiency
of the exploration process but also enhance the overall safety of the operation, especially
in environments with unpredictable or tight spaces. The ability to dynamically adjust
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paths based on the real-time positions of other robots in the proximity would add a layer
of intelligence and adaptability to the system, making it more robust and reliable in
complex terrain. Such a feature would represent a significant step forward in autonomous
robotic exploration and mapping technologies.

Although the frontier exploration algorithm was not the central focus of this disser-
tation, the current method employed for shared map data between the two ground robots,
where one robot selects the second closest point of interest to avoid converging on the
same goal as the other, highlights an area ripe for improvement. Significant enhancement
in the efficiency of the mapping process could be achieved by developing an algorithm
specifically tailored for collaborative decision-making in frontier exploration.

This specialized algorithm would focus on optimizing the decision process when se-
lecting target points for exploration, particularly when multiple robots share mapping
data. Instead of simply defaulting to the second closest frontier, the algorithm could
analyze a range of factors such as the robots’ current positions, their remaining battery
life, the terrain’s complexity, and areas already covered. By considering these variables,
the algorithm would dynamically allocate exploration targets in a manner that maximizes
coverage and minimizes overlap.
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