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Abstract:
In recent years, the accessibility to Graphics Processing Unit (GPU)s and hardware

accelerators for space missions has increased drastically with implementable Commercial
Off-The-Shelf (COTS) solutions. As a result, the onboard computing power has increased
for many space missions, and the performances of the different video compression
methods have been improved. With such evolution in computing resources, it is crucial to
analyze the different methods and record their performances, to find efficient compression
methods in this new configuration. To find efficient compression methods, we developed
a benchmark, to assess multiple methods on their compression ratios, power consumption,
execution time and the difference of quality between the input and output images on a low
resource configuration, adapted for space missions. From the analysis led in this thesis 4,
on the standard codecs, the more lossless the compression, the higher the benefits from
the acceleration. The machine learning approach shows promising results for the future,
and the Consultative Committee for Space Data Systems (CCSDS) 122 despite the GPU
acceleration was outperformed by Advanced Video Coding (H.264) and High-Efficiency
Video Coding (H.265).

Keywords GPU, hardware accelerator, COTS, CCSDS, H.265, H.264

CERCS: T320 Space technology, T111 Imaging, image processing

Manussüsteemiga pildijada (video) kompresseerimise hindamine tule-
vaste kosmoserakenduste jaoks
Lühikokkuvõte:
Viimastel aastatel on ligipääs graafikakaartidele (GPU) ja riistvarakiirenditele kosmose-
missioonide jaoks suurenenud märkimisväärselt tänu rakendatavatele kommertslahen-
dustele (COTS). Selle tulemusena on paljude missioonide pardal olev arvutusvõimsus
suurenenud ning erinevate kompressioonimeetodite jõudlus on paranenud. Selle mõjul
on oluline analüüsida erinevaid meetodeid, et tuvastada tõhusaimad meetodid. Selleks
arendasime võrdlusalused mitme meetodi omavaheliseks võrdluseks järgneva alusel:
kompressioonisuhe, energiatarve, täitmisaeg ja kvaliteedi erinevus sisend- ja väljundpilti-
de vahel madala ressursikonfiguratsiooni puhul, mis on kohandatud kosmosemissioonide
jaoks. Analüüsist selgub, et standardsete koodekite puhul mida suurema kaoga komp-
resseeritakse, seda suuremad on kiirendusest tulenevad eelised. Masinõppe lähenemine
näitab lootustandvaid tulemusi ning CCSDS 122, hoolimata GPU kiirendusest, jäi alla
H.264 ja H.265-le.

Võtmesõnad: GPU, riistvaraline kiirendus, COTS, CCSDS, H.265, H.264

CERCS: T320 Kosmosetehnoloogia, T111 Pilditehnika
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1 Introduction
This thesis is a benchmark of multiple video compression methods on a space-relevant
System on Chip (SoC). This work will cover multiple video compression methods which
are interesting to benchmark for future possible applications in the space industry. The
Kuupkulgur[4] Rover development originates this study, led in parallel to the project.

1.1 Background
Space exploration has been evolving very fast in the past years with very ambitious
projects such as Artemis [5] from National Aeronautics and Space Administration
(NASA) whose final objective would be to build a lunar camp on the south pole of the
moon for exploration, scientific objectives, in-situ resource utilization, and may be used
as a hub for further space exploration in the future. For exploration space missions,
multiple rovers[6] such as Sojourner, Spirit and Opportunity, Curiosity, and Perseverance
have been sent in the past and provided excellent results. On such predicate, multiple
project developments have started around small rovers [7][4] [8]. Their objective is to
provide a small cost-efficient platform to perform scientific experiments, test payloads
and explore. With such applications, all resources available to the rovers are vital.
Therefore, it is crucial to optimise, all the processes to have a viable end product. This
benchmark continues the effort in the line of optimisation of the different processes for
space systems with work on image sequence/video compression methods analysis, which
may be used by the Kuupkulgur [4], a project conducted at Tartu Observatory, in the
University of Tartu[9].

1.2 Problem statement
Despite the evolution of technology, many space missions get through an information
bottleneck limiting its amount and quality. Nevertheless, in such an unforgiving envi-
ronment, many subsystems need to run at all times, and some others must be active at
specific moments to ensure the mission’s success. Thus, it is crucial to set up efficient
data compression methods to save resources while exchanging as much information as
possible within an acceptable level of quality. For this specific problem, the Consultative
Committee for Space Data Systems (CCSDS) designed standards which are updated
regularly, to adapt to the changing technologies. Recently, a lot of effort has been oriented
towards the availability of Graphics Processing Unit (GPU) and hardware accelerators in
space [10][11]. These efforts can be seen in multiple projects, such as:

• On Board Processing Benchmark (OBPMark) [10]: a framework built to
test the space standards on both Central Processing Unit (CPU) and GPU, for
comparisons
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• Graphical Processing Unit for Space (GPU4S) [11]: a research project, to build
an optimized, and affordable computing system implementing GPU for space.

With the increasing accessibility of GPU, the computing power of many space missions
is expected to increase. As GPUs may become a norm, it is crucial to test methods
designed for space on both CPU, GPU and hardware accelerators, but also test other
computationally expensive methods on relevant hardware platforms.

1.3 Goals
As GPUs have become more accessible, the average onboard computing power has
increased significantly [12] [13] and the standing point of image/video compression for
space has become unclear. Therefore the purpose of this work is to test and examine
the performance of CCSDS 122 [3] (popular video compression standard for space
missions) on a space relevant environment and compare these to the performances
of Advanced Video Coding (H.264), the most used video compression method, High-
Efficiency Video Coding (H.265) its more computationally demanding descendant, and
finally, pre-trained models of a rigorous Neural Network benchmark project named
compressAI [14]. Objectives of the thesis include the following:

• Find the boundaries of GPU and Hardware accelerators compared to CPU for
image/video compression

• Provide a baseline based on performances for compression method selection in
future space missions

• Develop a pipeline to test other methods in the future
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2 Literature Review

2.1 General Notions
2.1.1 Lossy and Lossless compression

A very fundamental notion about compression that must be understood is the difference
between lossy and lossless compression. Both of those methods share a common point
of finding patterns, redundancy or similarities that allow data that would reduce the
overall size of the data. Lossy differs from lossless in the way that it approximates
the data without requiring a perfect replacement. For this reason, it can achieve higher
compression ratios but also sacrifices some levels of detail according to the degree
approximation as shown in the example in figure 1.

Figure 1. Example compression on a photo [1].

2.1.2 Compression methods

To compress a video, there are various steps which are performed on all the different
standards. Each of these steps can be implemented in multiple ways, with different
approaches and varying results, but the general techniques remain the same [15] [16]:

• Partitioning: Splits the image into multiple blocks

• Prediction: predicts similar information from previous data.

– Spatial Redundancy: Finds redundancy within a frame from patterns, neigh-
bouring pixels, etc.
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– Temporal Redundancy: Finds similarities between images to avoid re-
encoding the same components multiple times.

• Quantization: Regroups similar information into batches

• Entropy Coding: Uses the distribution to assign smaller representations to the
most frequent patterns [17].

• Motion Compensation: Predict pixels/patterns positions, to reduce motion blur

The decision to apply one of these methods over another often comes down to a trade-off
between computational intensity, compression ratios (between the original and encoded
file) and the associated efficiencies.

2.1.3 Standard video codecs

As the amount of possible technique combinations is large, standard codecs have emerged
to help. A codec (from coding/decoding) represents all the techniques applied on a file
from the original to the encoded version, and vice-versa.

Among all codecs, research into relevant standards[18],[19],[20], [21], [22], [23],
[14] have yielded the following:

• H.264/AVC [24]: H.264, is a widely used video compression standard. It offers
efficient compression while maintaining high video quality. It has been com-
monly utilized in applications such as video streaming, Blu-ray discs, and video
conferencing.

• H.265/HEVC [25]: H.265, is a successor to H.264 and provides better com-
pression efficiency. It is particularly used for High Definition (HD) content until
4K.

• Versatile Video Coding (H.266)/VVC [26]: H.266, represents the latest advance-
ment of the H.264 and H.265 family. It aims to further improve compression
efficiency compared to H.265, making it suitable for high-resolution video content,
including 8K and beyond.

• Video Codec 9 (designed by Google) (VP9) [27]: VP9 is an open-source video
compression standard developed by Google. It competes with H.265 and offers
efficient compression, making it popular for web-based video streaming services,
especially on platforms like YouTube.

• AOMedia Video 1 (AV1) [28]: AV1 is another open-source video codec designed
for efficient compression and high video quality. It is developed by the Alliance
for Open Media. AV1 is gaining popularity for online video streaming.
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Since H.264 is a widely used codec, it was chosen as a first test for standards which are
not designed for space. Then H.265 was chosen over VP9 to test the processing limits
with a similar implementation to H.264 for comparisons. VP9 was not selected as more
computing resources than H.265 are required.
Specifics and details about the implementation of formats fall outside the scope of this
study. Nevertheless, for a better global understanding, an overview has been provided.
Formats regroup a standardized video codec, an audio codec and metadata to define the
file. Multiple formats exist, offering a range of different codec combinations. Some
popular formats are:

• MPEG-4(Moving Picture Experts Group-4) (MP4): H.264 video codec, Advanced
Audio Coding (AAC) audio codec

• Web Multimedia (WebM): VP9 video codec, Opus or Vorbis audio codec

• Audio Video Interleave (AVI): can accommodate various codecs

• Matroska Video (MKV): can contain various video and audio codecs

2.2 Specific Notions of Space application
2.2.1 On-board processing

As mentioned in [11] the existing Commercial Off-The-Shelf (COTS) hardware com-
puting systems are not perfectly fit to the constraints for many space applications. Then,
it becomes necessary to develop a customized system if the risks become too large.
However, the skills required and fabrication methods are mostly held by the companies
on the market. It is possible to have partnerships, but the processes and hardware cannot
be disclosed, making it very difficult to choose the right partner for a mission. When a
computer is developed for space applications, it gets very expensive as one must test all
the components, respect physical conditions while maintaining a minimum performance
level, and run all the necessary processes of the mission for a functional end product.
The physical constraints that must be respected are :

• Limited Power: (most missions rely on solar panels and must avoid overheating)

• Resistance to vibrations: (most dangers at launch)

• Radiation hardening: (for cosmic rays and solar radiations)

• Vacuum: (outgassing and pressure problems)

• Extreme temperatures : From launch to end of life, the systems are subject to cold
temperatures, down to 270 °C in outer space, and up to very high temperatures,
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up to 2000°C and more. These temperatures are mitigated to avoid damaging
the hardware. The larger the working temperature range, the less constrained the
design is.

• Mass and size : (essentially for the launch )

As a result, most designs are currently built on CPU or Field-Programmable Gate
Array (FPGA) on separate devices, to have the most suited computing system for a
mission. Nevertheless, it is highly expensive to develop and can’t be used for everything.
In order to respond to the growing interest toward GPUs and hardware accelerators,
NASA performed a first benchmark of the different COTS designs in 2018 [12]. For
small missions and Low Earth Orbit (LEO), it was deemed possible to use them as
cheaper options. Then, it became clear that using GPU for space technologies was
crucial for enhancing the computing performances of avionics and the GPU4S [11]
was designed by the scientific community. It provides a hardware framework, access to
relatively cheap GPUs and a computing system adapted for most missions. The "Case-
Study for Integration of COTS SoC Devices in Reliable Space Systems for On-Board
Processing" [13] recently published under Barcelona Supercomputing Center (BSC),
European Space agency (ESA) and Universitat Politècnica de Catalunya (UPC) showed
that the NVIDIA SoC provide reliable alternatives for space applications with additional
embedded software accelerators. Since GPUs and hardware acceleration has become
easily accessible for many space projects, it is necessary to run tests of the existing
compression methods and provide more information on the COTS on-board processing
performances.

2.2.2 Space standard

Despite the quick evolution of the processing systems and their computing capabilities,
heavy calculations or processes remain a limiting factor for the use of certain methods.
Consequently, these methods have been applied only within specific scenarios. In the
past H.264 computations used to be too heavy. With the progression of the processing
power, it has become a reference standard for a multiplicity of applications. The global
norm is transitioning to H.265 which continues to present challenges due to its high
computational requirements.
As this computing limit exists on Earth, it is an even larger issue in space, with processing
units that must fit into very specific criteria, as in list 2.2.1. To ensure the availability
of codecs adapted to the performances of space computing systems, the CCSDS built a
series of standards to be used on data compression, for space applications. They offer a
good baseline to find the right compromise between compression and computing power.
The CCSDS[29] standards are used by many actors in the space industry, such as the
ESA, NASA, Japan Aerospace Exploration Agency (JAXA), Indian Space Research
Organisation (ISRO), Roscosmos, etc. All these actors in the space industry use the
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CCSDS standards to maintain compatibility and consistency with each other. Those
standards cover a variety of topics related to communication, data handling, and security.
They are openly accessible on [29]. The CCSDS standards relevant for this body of
work on data compression are:

• CCSDS 121: [30] a 1D lossless compression based on Rice [31] algorithm

• CCSDS 122: [3] a 2D with lossless and lossy compression based on DWT and
Bit planes

• CCSDS 123: [32] a 3D Multi/hyperspectral compression based on predictions

2.3 Other compression benchmarks
Video compression is a thriving topic among computer scientists and the amount of data
we use continues to increase daily. Therefore, a lot of attention is put toward compression
methods. The standard for most public use scenarios is on the H.264 computing level.
Nowadays, the transition to H.265 level has yet to be done, and the H.266 already exists.
To increase significantly the compressions, using a more efficient codec is necessary,
but it may requires an upgrade of the global hardware. Therefore, testing the different
configurations is necessary, leading to multiple benchmarks and comparisons of the
methods such as [33] [19] [20], and others. Recently, with the evolution of the field
of machine learning, new methods appeared with the help of different frameworks,
such as TensorFlow and PyTorch. After training many models, new models such as
Deep Video Compression (DVC) [18], Feature-space Video Coding (FVC) [22], Video
Compression Transformer (VCT) [23] displayed very convincing results. After these new
developments, the scientific community needed a rigorous comparison of the machine
learning and the standard codecs (such as in section 2.1.3). Multiple benchmarking
projects were developed as a result, such as

CompressAI, an end-to-end compression benchmark platform for research [14],
and the Moscow State University (MSU) benchmark [34] implementing their Neural
Network (NN) method paper [21]. As these evaluations were not directly related to
space, the evaluations were performed on top-notch computing systems for the training
and tests. In our case, we will implement the CCSDS 122 [3] space standard with the
OBPMark [10] framework as a base. This setup will be used as a reference to compare
the performances of the standard with other compression methods using a platform
constrained by space requirements.
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3 Methodology
It must be noted that for this body of work, further mentions of the term "video" express
the idea of a sequence of images.

3.1 Test Facilities and Hardware Resources
All the work performed in this study was realised at Tartu Observatory [9] of the Univer-
sity of Tartu. In particular, the Lunar analog environment facility visible in figure 2a and
figure 2b. This "simulated" environment serves multiple purposes such as testing the
mechanics and gathering camera and sensor data for test platforms (such as the KuupKul-
gur rover would ex: appendix figure 16). All the images used for the compression tests
presented in section 3.4 were captured with the onboard front camera visible in figure
2b. The camera model is the Waveshare IMX219-160 Camera Module for Jetson Nano,
with IMX219 Sensor 8 Megapixels 160° Field of View (FOV) Wide Viewing Angle and
supports a maximum resolution of 3280 × 2464 [35].

(a) Lunar environment. (b) Lunar rover prototype [36].

Figure 2. Space Bunker images

To process all those images, we needed a computing system. According to the NASA
paper [12], affordable and efficient COTS options are appearing on the global market,
notably on the Nvidia side with the Jetson computing boards. As mentioned in [12],
recent models offer very good computing power with CPUs, GPUs and hardware accel-
eration, providing a solid framework for accelerated Artificial intelligence (AI) with the
Compute Unified Device Architecture (CUDA) cores, but also the codec accelerators
( NVIDIA Encoder (NVENC) and NVIDIA Decoder (NVDEC) ) granting the access
to GPU and hardware accelerated H.265 and H.264. The platform also offers physical
benefits such as a good radiation characteristics [13]. With that in mind, we initiated the
project with a Jetson Xavier and upgraded to the Orin AGX as the possibility to use the
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Jetson Orin AGX dev kit was demonstrated in an ESA case study presented in October
[13]. For this SoC, the hardware architecture is visible in figure 3, where you see the 3
groups of 4 CPUs, the 2 GPUs and the 5 Hardware accelerators:

• Deep Learning Accelerator (DLA): accelerator for Deep Learning tasks such as
Convolutional Neural Network (CNN)s

• Programmable Vision Accelerator (PVA): accelerator for computer vision tasks

• High Dynamic Range Image Signal Processor (HDR ISP): accelerator for
processing image signals with high dynamic range

• Video Decoder: accelerator for decoding ( NVENC)

• Video Encoder: accelerator for encoding ( NVDEC)

It is important to note that when the device runs under 15W, 8 of the 12 CPUs are turned
off. At last, the device was provided with a 128 GB Solid-State Drive (SSD) for the data
storage.
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Figure 3. "Orin SoC Block Diagram" [2].

3.2 Software
To start the work, the Jetson AGX Orin Dev kit 32 GB was flashed with Jetpack 5.1.2.
All the work was done on Ubuntu 20.04 on an arm.64 architecture. For the software
architecture, Robot Operating System (ROS) [37] was installed to develop and connect
the different features of the rover. Then, for the video compression work, the accelerated
Gstreamer [38], [39] and Fast Forward Moving Picture Experts Group (FFMPEG) [40]
[41]libraries were installed to run the standard codecs and accelerators available on the
Jetson. For the Machine learning implementations, the PyTorch library with its required
dependencies. The Anaconda framework was also installed to limit the risks. the versions
of the different components mentioned above are:

• ROS Noetic

• Ubuntu 20.04 Focal
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• GStreamer 1.14.1

• FFMPEG 4.2.7

• Python 3.11

• PyTorch 2.1.1

3.3 Tools
Through the development of the project, many tools were used to reach the end product.
A list of the most important tools for the development is available in the appendix 6

3.4 Benchmarking methods
3.4.1 CCSDS 122

The first compression method to be tested is the CCSDS 122 standard [3]. This standard
is specifically designed for image compression. For a benchmark related to video
compression, it is the most important method to assess as it is a widely used standard for
space missions.
To summarize the mechanism, the data is processed by using Discrete Wavelet Transform
(DWT) [42], which turns the image data into a batch of coefficients. Then, the DWT
is applied three times, to separate the data into filters, each defining some information
about the picture as in figure 4. Once the image is separated, the coefficients are grouped
in a block as in figure 5a. Those blocks are concatenated to build segments, which are
fed into the bit plane encoder. This encoder sorts the coefficient into planes according
to the number of bits necessary to encode the value of the coefficient. Afterwards, the
encoded bit planes are concatenated to the previous planes. This operation is repeated
until the number of bits necessary to describe the information is 0 or the available byte
space to write information is reached. In the case memory runs out, lossy compression is
performed as the planes containing the least information in the segment are truncated.
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Figure 4. " Three-Level 2-d DWT Decomposition of an Image" [3].

(a) "Schematic of Wavelet-Transformed Im-
age " [3].

(b) "Overview of the Structure of a Coded Seg-
ment within one bit plane " [3].

Figure 5. CCSDS Shematics

3.4.2 H.264

The H.264 codec, was chosen among all codecs for multiple reasons:

• High-definition formats are encoded with it

• Good video quality is achieved at low bitrates (broadcasting).

• The standard is supported by most devices
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• Hardware accelerators are available on the Jetson AGX Orin [2], and visible in
figure 3

To explain the mechanism, the encoding process follows the steps defined in section
3.4. The source video undergoes splitting into 16x16 or 4x4 blocks, used for intraframe
and interframe prediction. Then, a Discrete Cosine Transform (DCT) is applied to the
residual of the predictions. Afterwards, the coefficients resulting from the DCT are
quantized according to the Quantization Parameter (qp). At last, the quantized block of
coefficients is encoded into bits with variable length encoding or arithmetic coding

3.4.3 H.265

Once H.264 was chosen, his successor H.265 had to be tested too as it offers better
performances at the cost of heavier processing. Then the Jetson Orin AGX[2] also
possesses hardware accelerators (visible in figure 3) for it. The differences with H.264 in
the encoding mechanism are:

• Partitioning: The blocks diversity has been highly increased, and these blocks are
further partitioned in coding Tree Unit (CTU)s

• Predictions:Predictions are not simply intraframe and interframe, often, images
are predicted solely with intraframe prediction, to avoid large extrapolations

3.4.4 Machine learning approach

As mentioned in the introduction section 2.3, machine learning implementations have
developed a lot in recent years. Multiple methods have been tailored and trained to
present better results than the previous codecs (such as in section 2.1.3). As mentioned
in the section 3, the Jetson AGX Orin [2] hardware was built with GPU and hardware ac-
celeration, with CUDA cores which enable AI acceleration. Therefore, the CompressAI
[14] [43] framework has been tested in this thesis. The CompressAI project has designed
a library for end-to-end machine learning based compression research, complementing
this body of work with a fully developed framework offering multiple image and video
compression methods built from research articles [44] [45] [46] [47][44]. Also, Com-
pressAI has mentioned plans to expand the framework and implement new models. The
existing pre-trained models in the CompressAI library are available in the "model zoo":

• FactorizedPrior [45]

• ScaleHyperprior [45]

• MeanScaleHyperprior [47]

• JointAutoregressiveHierarchicalPriors [47]
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• Cheng2020Anchor [46]

• Cheng2020Attention [46]

• ScaleSpaceFlow [44]

3.5 Metrics
To ensure the relevance of the different tests performed in this benchmark, the tests
were realized in the 15 W power mode of the Jetson AGX Orin. It is the closest mode
to eventual implementations of the KuupKulgur rover for any eventual Lunar mission.
The main metrics used are the time for the encoding, the quality of the output image,
the compression ratio and the power consumption. These four elements are the most
representative of the efficiency of a compression method for space application. It is
important to note that this body of work sets a baseline for video encoding. Decoding
was not deemed to be a computation cost as the videos have been assumed to flow from
space toward Earth.

3.5.1 Computational Time

Ideally, the measured time for the different methods implemented in all case scenarios is
the execution time for the encoding. However, for the H.264 and H.265, and CompressAI,
there was no tool available to get such accuracy. Therefore, the time measurement will
cover the total execution time for each method following the processes mentioned
previously.

3.5.2 Quality

There exist multiple methods to assess the quality of an image. In this benchmark, the
Peak Signal-to-Noise Ratio (PSNR) has been programmed to assess it. The PSNR is
the ratio between the maximum power of a signal, and the noise induced through the
processing, computed with:

PSNR = 10 · log10
(

MSE
MAX2

)
with:

• PSNR: In decibel (dB)

• MAX: The maximum possible pixel value of the image (e.g., 255 for an 8-bit
image).
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• Mean Squared Error (MSE): The Mean Squared Error between the original and
reconstructed image.

After compressing, the outputs will be decompressed, and this output image will be
compared with the original to assess the noise. This process will be executed for all
scenarios.

3.5.3 Compression ratio

The compression measurement will remain simple. The output compressed file will be
compared to the original file size. The Compression Ratio is given by:

Compression Ratio (%) =
(
1− Size of Uncompressed Data (kB)

Size of Compressed Data (kB)

)
× 100

3.5.4 Power

The power consumption of the compression methods is difficult to measure properly. To
get the most accurate measurement possible, we will use the Jetson-stats [48] interface
from Jetson-stats. This tool provides information about all the different resources of the
Jetson in real-time. From those, we retrieve the instantaneous power consumption through
the complete duration of the process to compute a mean power consumption. To avoid
interferences from other sources using the power of the jetson, the benchmark has been
entirely executed via Secure Shell (ssh) from a remote computer. From experimentations
during the development, connecting a screen to the Jetson AGX Orin[2] changes the
total power consumption. At last, as the platform was designed, it appeared that reading
and writing the inputs and outputs in an SSD instead of an Secure Digital (SD) storage
reduces the instantaneous power consumption by a Watt. Since the limits of the storage
capacity of the SoC had been reached, no further tests have been done.

3.6 Implementation
After selecting the method, and the metrics, this section will cover the process to set
them up physically.

3.6.1 CCSDS 122

To implement the CCSDS 122 standard on the Jetson, the OBPMark [10] framework
was set up. This framework is a benchmarking platform available on GitHub [49], which
offers multiple CCSDS standards for compression and a GPU4S [11] benchmark. Using
this project work as a reference, the framework was modified to fit the purpose of this
work. The main modification for this body of work has been about video compression.
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Since the source structure was built to encode single images, it has been modified to
convert a sequence of images instead. The program originally generated compressed
binary files for each image, therefore it has been changed to gather all these binary files
within a folder. Ideally, after being compressed, images should have been decompressed
within an image output folder. Nevertheless, this method proved to be challenging as
the official codecs for CCSDS 122 available on the CCSDS page [29] could not provide
results from the encoded files. Also, the WhiteDwarf [50] decoder used by OBPMark,
was not accessible in time for the tests. For the CCSDS tests, the bit size of each
pixel (bps) parameter was used to change the compression from lossless to lossy. The
different possibilities of tuning have been 8 and 16, for the different bit sizes of 1 byte
and 2 bytes of each pixel.

3.6.2 H.264 and H.265

The FFMPEG [40] library provides an optimised version of the H.264 and H.265 en-
coders on CPU. This library provides multiple features to tune the available codecs with
further descriptions in the FFMPEG documentation[40]. In this library, the parameters
work on both H.264 and H.265. Therefore, to assess the differences, all the parameters
are kept the same between the two codecs. For the tests, Constant Rate Factor (crf)
has been the most important tuning parameter. It has offered the possibility to change
the quantization parameter, to variate the compression, from near lossless to lossy with
parameters scaling from 0 to 51. Concerning the GPU and hardware acceleration, the
GStreamer[38] library was initialized similarly as the CPU version with tuning on the
qp_range, varying from 0 to 51. These two library commands, available in the appendix
tables 6, and 6 produce a compressed ".264" or "265" file, which can be decompressed
into an image folder by the decompressing code 6 provided in the appendix.

3.6.3 Machine Learning

As mentioned in section 3.1, the Jetson Orin provides an efficient AI framework with the
GPU and hardware acceleration. Therefore to evaluate what the system is capable of,
the CompressAI framework was implemented. It provides a well-documented platform
implementing multiple pre-trained models, which can be used off the shelf, with Python
3.6+, PyTorch 1.7+ and the codes. For this paper, we made tests with all the models
available trained on the Vimeo images [51]. Therefore, the results could be improved
through specific training on topic relevant datasets. Only image compression models
worked in the designed architecture. Therefore sequential image compression has been
implemented as with the CCSDS 122 in section 3.6.1.
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3.6.4 Testbench Pipeline

Many video compression benchmarks of the classical standards discussed in section 2.1.3
provide fixed results and method comparisons. Recent projects with the NN method
provided the feature to train your models and analyze the results. It is a very interesting
tool that shall be expanded to video compression as a whole. In that fashion, this project
aims to set up a framework with specific inputs and outputs to help concatenate future
metrics, compression methods or parameters. An overview of the developed pipeline can
be seen in figure 6.

Figure 6. "Overview of the benchmark process".

As in figure 6, the different methods have been implemented such that they output a
compressed file or a folder to test the compression ratio. Then, after decompression,
they output a folder of images which is used to measure the PSNR quality. Through
the compression, the execution time is measured from the duration of the subprocess
calling each method. At last, power is measured using Jetson TOP (JTOP) [48] with
multi-threading to enable the simultaneous execution of both the compression method
and JTOP.
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4 Results and analysis

4.1 H.264 and H.265 tests
The H.264, and H.265 codecs have been tested on 900 image videos (30 seconds at
30 frames per second). The information has been plotted using the evolution of the
quantization parameter from 5 to 50, using qp values from 0 to 9 to represent them. As
H.264 and H.265 are originally lossy methods, the higher the qp value, the lossier the
compression. Nevertheless, at qp0, the compression can be considered near-lossless [40]
[39] The tests performed On H.264, and H.265 , have been conducted with CPU and
NVENC accelerator.

4.1.1 H.264

In the graph representing the evolution of the compression ratio related to the quantization
parameter in figure 7, the compression ratio decreases exponentially until qp6. After-
wards, there are minor improvements. Also, there is a disparity between the different
videos which disappears as the compression becomes lossier.

Figure 7. Graph of the evolution of the compression ratio compared to the change in the
quantization parameter.

The figure 8 represents the evolution of the execution time against quantization parame-
ters. It can be observed that the NVENC accelerated computing time remains around
58 seconds despite the change in quantization. On another hand, the CPU computation
execution time almost decreases by 4 times along the scale.
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Figure 8. Graph of the evolution of the execution time compared to the change in the
quantization parameter.

Analysis into the PSNR measurements of the benchmark on the PSNR measurements
as seen in figure 9, the image quality of the CPU decreases slowly on the first 4 steps
of quantization with less than 0.1 dB/step. Afterwards, it decreases by more than 0.6
dB/step. This change displays a threshold where the quality starts dropping significantly
after reaching quantization parameters superior to 20. Then, the NVENC accelerator
displays surprising results. Acceleration, should not be the source of such a difference
as it computes in parallel. As the PSNR computation is the same for all the methods,
the offset must be from the GStreamer implementation. From the table 1, results show
that the image quality is very unstable on GStreamer accelerated, compared to FFMPEG
CPU.
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Figure 9. Graph of the evolution of the PSNR image quality compared to the change in
the quantization parameter.

Table 1. H.264 PSNR difference between CPU and NVENC (from annex tables 5 and 6)

video 1 Mean Standard deviation Maximum Minimum

NVENC_qp0 21.06 2.77 27.80 12.82

CPU_qp0 25.72 0.62 27.6 24.4

NVENC_qp9 21.21 2.32 25.66 13.58

CPU_qp9 21.09 1.80 24.81 14.18

Finally, the power measurements on the H.264 methods visible in the figure 10 show
that the CPU compression consumes more power than NVENC accelerated compression.
Using the information from the execution time figure 8, it is clear that the CPU uses more
energy (appendix figure 17) overall as its consumption and execution time are either
equal or higher than NVENC implementation.
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Figure 10. H.264 Graph of the evolution of the mean Power consumption compared to
the change in the quantization parameter.

4.2 H.265 test
In the graph representing the evolution of the compression ratio related to the quantization
parameter from figure 11, the same trends as with H.264 in figure 11 appear. The main
difference lies in the compression ratio being about 5% smaller than the later on qp0.
This difference decreases gradually with the augmentation of qp and disappears after qp6.
Therefore compressing with H.265 on a very lossy setting does not hold more interest
than compressing with H.264 on the file size.
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Figure 11. Graph of the evolution of the compression ratio compared to the change in
the quantization parameter.

Then, the figure 12, representing the evolution of the execution time according to the
quantization shows similar results as with the H.264 figure 8. Between the two codecs,
the NVENC accelerated processing time remains the same (around 58 seconds). The
main difference comes from the CPU execution time, exploding with more than 10 time
increase on qp0, and about 7 times higher at qp9. This change shows a limit of the CPU
capabilities for H.265 as it is not a viable solution time-wise.
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Figure 12. Graph of the evolution of the execution time compared to the change in the
quantization parameter.

Then, looking into the PSNR measurements of the benchmark, the trend of the
image quality is the same as with the H.264 trend from the figure 9. Then, NVENC
acceleration similarly shows unstable results in the table 2 as in table 1. Comparing these
two tables, interesting information appears as the qp0 of the two tables are the same on
two digits, but differences appear as quantization increases since qp0 generate a near
lossless compression.
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Figure 13. Graph of the evolution of the PSNR image quality compared to the change in
the quantization parameter.

Table 2. H.264 PSNR difference between CPU and GPU (from annex table 7 and 8)

video 1 Mean Standard deviation Maximum Minimum

NVENC_qp0 21.06 2.77 27.80 12.82

CPU_qp0 25.71 0.62 27.6 24.4

NVENC_qp9 21.50 2.73 26.78 13.39

CPU_qp9 21.74 1.96 25.33 13.78

At last, the power measurements on the H.265 methods visible in the figure 14 shows
that the NVENC accelerated compression consumes more power than CPU. The power
consumption has remained stable between 8.7, and 8.6 W, whereas the CPU decreases
by nearly 0.4 W over the evolution of qp.
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Figure 14. H.265 Graph of the evolution of the mean Power consumption compared to
the change in the quantization parameter.

4.3 CCSDS test
The CCSDS 122 codec has not been tested with 900 image videos, but it has repeatedly
been tested on 300 images (for a 10 seconds video at 30 images per second). This choice
has been induced by the variability of the results. Therefore, the presented graphs have
come from the average performance on 4 tests for the 300 images videos. Through
the table, results show that the compression ratios and the execution time have been
improved by 8 % and 10 to 27 seconds, at the cost of 700 mW by the CUDA implemented
GPU. The induced changes have not been as striking as in the figures 12 and 8, but the
capacity of the CUDA implemented GPU to improve the different compression methods
is verified.
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Table 3. CCSDS compression ratio table

parameters compression ration (%) execution time (s) Power (mW)

GPU_lossless 68.05 290.94 9010.06

CPU_lossless 60.26 301.71 8385.22

GPU_lossy 33.27 149.68 9121.59

CPU_lossy 25.6 176.79 8461.52

4.4 CompressAI models test
From the models available in the CompressAI[14] zoo, the Video compressing model
[44] was not available, and within the image compression section, 2 of the models
(cheng2020_anchor [46] and mbt2018 [47]) were not working. After running all remain-
ing models on a test set of 220 images (for a video of 7.3 seconds), the following results
were gathered in the table below:

Table 4. Benchmark of machine learning models on video compression

Model Compre (%) Time (s) Energy (Wh) Quality (dB)

bmshj2018_factorized 1.13 2150.12 5.49 31.79

bmshj2018_hyperprior 0.88 2265.45 5.78 31.88

mbt2018_mean 0.77 2359.71 6.03 31.92

cheng2020_attn 0.58 11472.72 29.38 31.98

From these results, we can see that the models hold very good PSNR Quality and
compression ratios compared to the standard methods. On another hand, the execution
time results show no possibility for video compression used. The average power measured
displays similar results to the H.264 on CPU from the figure 10. After the methods
have been analyzed on JTOP, the information in figure 15 showed the process to be
running entirely on CPU. As seen in the H.264, and H.265 tests, the GPU and hardware
accelerated implementation can be the source of significant improvements in computing
time.
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Figure 15. JTOP panel showing no GPU use while running CompressAI models

5 Discussion
As mentioned in the test section 4, the machine learned approach has held amazing
results for quality with low compression ratios. Even though time has shown to be a very
large downside to the different approaches, the results have displayed the applicability of
the models in the domain of onboard image processing for a CPU base. On another hand,
the recorded accelerations on the H.264 and H.265 codecs have offered a very promising
view of the machine learning methods on GPU. Through this Body of work, the CCSDS
122 showed very limited results, visible in table 3. Whereas, H.264 and H.265 showed
significant evolutions upon acceleration. This situation shows that the CCSDS processes
cannot be parallelized much, and the efficiency is limited in its evolution at the moment.
Nevertheless, it is still used by many space systems, and will still need to be decoded
by new machines. The results shown by H.264 in the test section 4 showcased that
on a NVENC accelerated configuration, CCSDS 122 standard was largely bested on
both compression ratios and execution time. Nevertheless, for lossless compressions on
CPU, tests showed the two methods to hold very close results to one another. Therefore,
without a GPU or hardware accelerator in the on-board computing transitioning to H.264
does not seem to provide any improvement. From the Literature Review section 2, H.265
have been selected expecting to reach the limits of the computing system. The limits
of the codec were shown on the CPU implementation, due to the high execution time.
Nevertheless, the tests have shown the expectations to be wrong since the compressions,
execution time, and power consumptions offered by the method were superior to the
CCSDS 122 on GPU. A grey area has remained on the image quality difference between
the two.
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6 Conclusion
In this body of work, multiple compression methods have been studied, evaluated on
four metrics: time, power, quality, and compression, and compared on their results. A
pipeline offering an accessible compression testing ground has been built on Python
regrouping different implementations of the studied codecs. Using the metrics designed
in the body of work to assess the different implementations showed different results. The
newer approach of machine learning applied in this benchmark showed promising results
in quality countered by the large execution time. The H.264 codec showed improvements
in execution time and compression on CPU, which were significantly higher on NVENC
acceleration compared to the CCSDS 122 standard. The most outstanding method tested
in this thesis is the H.265, which required too many resources to provide improvements
to the CCSDS standard on CPU. On GPU, the results were better in all aspects compared
to the other methods tested in this benchmark. From the results obtained in this thesis, the
machine learning implementation has a lot of potential to unleash with GPU or NVENC
SoC destined for space applications. Also, the limits of the architecture were not found
with the H.265 standard method. Making further tests on the next generation H.266 may
offer interesting applications or more information on the limits of the classic codecs.
For future improvements of the benchmark, adding the White Dwarf [50] CCSDS 122
decompressor would enable more accurate comparisons of the quality of the different
standards. The quality assessment could also be improved with the implementation of
Structural Similarity (SSIM), and pair it with the PSNR for more informative quality
results. Lastly, investigate deeper into the FFMPEG or GStreamer frameworks evolu-
tion for the implementation of other accelerated standards, and consolidate the current
structure.
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Lisad

I. Additional data

A/ Figures

Figure 16. "Kuupkulgur FOV".
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Figure 17. 265 Graph of the evolution of the Energy consumption compared to the
change in the quantization parameter.

Figure 18. H.264 Graph of the evolution of the Energy consumption compared to the
change in the quantization parameter.

B/ Code
FFMPEG CPU command detail:
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cmd = [
"gst-launch-1.0",
"multifilesrc", "location=" + input_folder + bag_name + "/\%d.png"

, "index=1",
"caps=image/png,framerate=(fraction)30/1",
"!", "pngdec",
"!", "videoconvert",
"!", "video/x-raw, format=(string)I420",
"!", "nvvidconv",
"!", "video/x-raw(memory:NVMM), format=(string)I420",
"!", libenc(chose encoder), "qp-range=" + qp , "preset-level=" +

preset_level,
"!", "video/x-h" + method(264/265) + ", stream-format=(string)byte

-stream, alignment=(string)au",
"!", "filesink", "location=" + output_file_name, "-e"

]

GStreamer accelerated GPU

cmd = [
"gst-launch-1.0",
"multifilesrc", "location=" + input_folder + bag_name + "/\%d.png"

, "index=1",
"caps=image/png,framerate=(fraction)30/1",
"!", "pngdec",
"!", "videoconvert",
"!", "video/x-raw, format=(string)I420",
"!", "nvvidconv",
"!", "video/x-raw(memory:NVMM), format=(string)I420",
"!", libenc(chose encoder), "qp-range=" + qp , "preset-level=" +

preset_level,
"!", "video/x-h" + method(264/265) + ", stream-format=(string)byte

-stream, alignment=(string)au",
"!", "filesink", "location=" + output_file_name, "-e"

]

H.264 and H.265 decoding

gstreamer_command = [
"gst-launch-1.0",
"filesrc", "location=" + output_file_name,
"!", "h" + method(chose 264/265) + "parse",
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"!", "nvv4l2decoder",
"!", "nvvidconv",
"!", "videoconvert",
"!", "pngenc",
"!", "multifilesink", "location=" + output_file_name + "_img/%d.

png"
]

C/ Tables

Table 5. H.264 PSNR statistics on the GPU performances

Quantization Mean Standard deviation Maximum Minimum

qp0 21.06 2.77 27.80 12.82

qp1 21.05 2.76 27.85 12.82

qp2 21.07 2.78 28.00 12.83

qp3 21.11 2.81 28.12 12.85

qp4 21.17 2.86 28.06 12.88

qp5 21.27 2.89 27.36 12.93

qp6 21.28 2.80 26.51 13.03

qp7 21.24 2.61 26.06 13.21

qp8 21.23 2.49 26.06 13.53

qp9 21.21 2.32 25.66 13.58
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Table 6. H.264 PSNR statistics on the CPU performances

Quantization Mean Standard deviation Maximum Minimum

qp0 25.72 0.62 27.64 24.44

qp1 25.66 0.61 24.41 27.56

qp2 25.55 0.60 27.40 24.32

qp3 25.36 0.61 27.27 24.10

qp4 24.95 0.65 23.44 27.02

qp5 24.25 0.79 26.73 21.55

qp6 23.31 1.09 26.28 19.04

qp7 22.36 1.44 25.89 16.58

qp8 21.64 1.69 25.53 14.75

qp9 21.09 1.78 24.81 14.18
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Table 7. H.265 PSNR statistics on the GPU performances

Quantization Mean Standard deviation Maximum Minimum

qp0 21.08 2.77 27.82 12.82

qp1 21.07 2.77 27.88 12.82

qp2 21.11 2.79 28.00 12.83

qp3 21.16 2.82 28.13 12.85

qp4 21.25 2.85 28.17 12.87

qp5 21.38 2.89 27.75 12.93

qp6 21.50 2.86 27.15 13.07

qp7 21.50 2.76 26.89 13.29

qp8 21.50 2.73 26.81 13.40

qp9 21.50 2.73 26.78 13.39
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Table 8. H.265 PSNR statistics on the CPU performances

Quantization Mean Standard deviation Maximum Minimum

qp0 25.72 0.62 27.63 24.44

qp1 25.67 0.61 27.54 24.41

qp2 25.55 0.60 27.40 24.34

qp3 25.35 0.59 27.18 24.13

qp4 25.02 0.62 26.90 23.66

qp5 24.58 0.77 26.73 21.78

qp6 23.96 1.06 26.37 19.39

qp7 23.13 1.42 26.20 16.93

qp8 22.24 1.78 25.51 14.34

qp9 21.74 1.96 25.33 13.78

D/ Tools
• EDUVPN: VPN. Enables remote access to the Jetson AGX Orin.

• GitHub: Code source. Multiple repositories with programs working off the shelf
for different features.

• Gitlab: Project Hub. All codes were saved on the different branches.

• Python Wiki: Programming tool. Find information on Python functions.

• Geeks for Geeks: Programming tool. Information about code implementations on
multiple coding languages.

• W3Schools:Programming tool. Information about code implementations on multi-
ple coding languages.

• NumPy:Programming tool. Information about Numpy libraries.
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• Stack Overflow: Debugging tool. mostly used after errors appeared, or depen-
dency issues

• Ask Ubuntu: Debugging tool. Ubuntu dependencies problems or installations

• NVIDIA Blogs: Debugging tool. Provides information on the hardware set-up 3

• FFMPEG: Video compression tool. Provides information on the parameters and
commands to use FFMPEG codecs.

• GStreamer: Video compression tool. Provides information on the parameters and
commands to use codecs.

• Grammarly: Writing assistance tool. grammar internet plugin.

• IEEE: Information source.

• Elsevier: Information source.

• ResearchGate: Information source

• Arxiv: Information source.

• Sci-Hub: Article access tool. Unlocks part of the pay-to-read papers

• Medium: Information collection . Blogs provide quick and relatively detailed
information.

• Cambridge Dictionary: Dictionary.

• Obsidian: Blog tool. The first entries were made on Obsidian before changing to
One Note for the free online service

• OneNote: Blog Tool.

• Wikipedia: Information tool. First approach to new topics.

• Trello: KANBAN tool. Build a schedule

• Lucid Chart: Chart designing tool. Used to build the figure 6

• ChatGPT 3.5[52]: ChatGPT was used on many layers of the project. In the course
of developing this thesis, it was used for debugging, providing first draft infor-
mation for more accurate research, terminal commands for Linux and Windows
finding latex commands,
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