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Resümee/Abstract

INTUIT-VLNCE: Autonoomne Navigatsioon kasutades Nägemust-ja-Keelt

Käesoleva lõputöö eesmärk oli ilmse intuitsiooniga Kehastunud Agendi arendus. Kehastunud
Agent peab navigeerima läbi pideva siseruumi, kasutades antud Loomuliku Keele instruktsiooni
ja egotsentrilist nägemust, nagu on kirjeldatud Nägemus-ja-Keel ülesannes. Lõputöö pakkub
v”alja luua ilmset intuitsiooni: Agent ennustab ette nii tegu, mida on vaja hetkseisul sooritada,
kui ka tegusid, mida kavatsetakse sooritada tulevikus.

Agendi poliis oli trennitud samamoodi, nagu trennimine toimus LAW-VLNCE projektis [1].
Hindamine näitas negatiivseid tulemusi pärast pakutud meetodi rakendamist.

CERCS: P176 Tehisintellekt; T125 Automatiseerimine, robootika, control engineering;

Märksõnad: robootika, loomulik keel, kehastunud agent, autonoomia

INTUIT-VLNCE: Autonomous Navigation through Vision-and-Language

The aim of this thesis was to developed an Embodied Agent with explicit intuition capable of
navigating indoor Continuous Environments based on provided Natural Language instruction
and Agent’s egocentric vision as part of a Vision-and-Language Navigation task. The thesis
proposes creating explicit intuition by making an Agent predict not only an action to perform at
a given time, but also predicting actions for the future.

An Agent’s policy was trained mimicking the training procedure from LAW-VLNCE project
[1]. Evaluations showed negative results after implementing proposed method.

CERCS: P176 Artificial intelligence; T125 Automation, robotics, control engineering

Keywords: robotics, natural language, embodied agent, autonomy
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1 Introduction

We are in exciting times where AI is pervasive in our everyday lives. State-of-the-art machine
learning models can now tackle more and more complex tasks, from playing Go to solving
mathematical problems. Among all the disciplines, Natural Language Processing (NLP) shows
huge promise, especially with the arrival of ChatGPT. Applications such as text generation,
summarization, and sentiment analysis are now widely used in media, and advertisement [13].
The multi-modal applications of integrating images and text are ubiquitous that find applica-
tions in providing captions to images. Machine learning models Midjourney [14], Stable Dif-
fusion [15] and DALL-E [16] are now capable of generating images based on text prompts.
Chatbots/Virtual assistants work on the information retrieval paradigm and answer queries in
real-time used in applications ranging from health care to business process outsourcing (BPO).
Large Language Models (LLMs) based on the transformer neural networks introduced by Ope-
nAI changed the AI landscape. LLMs trained on large number of text tokens in an auot0-

(a) A small interaction between the author and Chat-
GPT 3.5 [17]

(b) popular website for submitting and answering
questions (Quora) now hosts a ChatGPT based bot
to provide an additional answer automatically [18]

Figure 1.1: Dynamic textual generative model for dialogue
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regressive manner started showing artificial general intelligence (AGI) capabilities in solving
very complex tasks of automated theorem prover. The divide between synthetic intelligence
and natural intelligence is slowly blurring and thus pointing us to unknown terrain. Examples
of the capabilities of interactive chatbots for question answering and generating code are shown
in Figure 1.1 and Figure 1.2 respectively.

Figure 1.2: Promotional material for GitHub copilot [2]

In this thesis, we have investigated the instruction-tuned robot navigation problem. Though
there are standard navigation algorithms (e.g. shorted path), the use of natural language as
a prior knowledge for the navigation task is a less studied area. Natural language adds logic
(common sense) and planning through syntax and semantics while solving the navigation task.
Text instructions ”Go through the corridor and into the kitchen and bring me a spoon from the
coffee table” - provides the strategy for the optimal path from source to destination. The aug-
mented visual intelligence through the Visual-and-Language Navigation (VLN) task, gives the
situational awareness to the robot to navigate its surroundings based on a given instruction. This
thesis investigates the following hypothesis

1.0.1 Research Hypothesis
Natural language provides an informed prior (through syntax and semantics) to search for an
optimal path from source to destination

1.0.2 Problem Description
An Agent (robot) located in an unknown indoor environment without any prior knowledge of
its location is given a text command to navigate. The agent is also given the additional ability
to egocentrically visually perceive its environment. Based on the instruction set and perception,
the agent optimally chooses its actions sequentially. The agent takes a series of local actions
to achieve its global objective of reaching the destination through a minimum cost (measure)
path. The local decisions to choose from a set of actions are function text commands and visual
images. The agent comprehends its surroundings from the multimodal data of text and visual
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data and improvises its local decisions accordingly. We restrict our navigation task to indoor
environments for simplicity.
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2 Background

In this section, we briefly describe the concepts, environmental models, and the datasets used.

2.1 Preliminaries
Agent - the thing or the person solving the task; a robot in our case

Oracle - an expert algorithm which is able to solve a given task perfectly, what an agent will
try to mimic in imitation learning

Embodiment - a quality of having a physical body located somewhere in an environment, able
to interact with a physical environment

2.2 Model of Environment
To train our Agents effectively to navigate, we need environments for an Agent to navigate.
The simulated environments bypass the difficulty of training the Agent in real-life environ-
ments. Training in real-life environments with actual buildings, roads, spaces, and robot are
expensive, time consuming and hazardous. Environment models are broadly split into two cat-
egories based on the type of navigable space: Discrete and Continuous.

Discrete Environments. Here environment is represented as a navigational graph (nav-graph),
where each node is a possible place for an Agent to visit and each edge represents a navigable
path between places. Discrete environment gives a high-level abstraction and reasoning for the
agent’s navigation path. Moving to a new node on the nav-graph, our Agent receives a new
image with respect to the reached node. The image can be a whole panorama, i.e. all possi-
ble views from the node, or it can be a single view from the Agent’s heading direction. For
example in FollowNet project [3], a 3D indoor house is encoded (represented) as a 2D regular
grid, where at each time-step the agent can either step straight into the forward facing node or
turn 90° in either left or right and receives an image corresponding to the Agent’s position and
rotation. In Matterport3D Simulator the node alignment are distributed throughout the floor
with average separation of 2.25m. The edges (navigable paths) connect the nodes within 5m of
each over with respect to serious obstacles such as walls. The Agent can pan and elevate the
camera and move to a next connected node caught in the camera’s field of view. After an action
is executed the Agent receives a new image and a set of navigable nodes [4]. The discrete nature
of the navigation space gives a perfect localization effect. The agent does not have a chance to
overshoot a node nor can it collide with an obstacle by accident. The quantization viewpoints
make the observed gathered data to be sparse [9]. Training an agent on a discrete environment
and then transferring the trained agent into the low-level real world comes with a penalty. An-
derson et al. reported that the accuracy (of the agent) went from 55.9% in simulations to 22.5%
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in the real world, without any prior knowledge [19].

Figure 2.1: Renders of two houses used in the development of FollowNet. Notice the green
grid placed on the floor, where nodes depict possible locations and edges - possible rotations
(as well as navigable paths) of an Agent. [3]

Figure 2.2: Left: an example nav-graph (in blue) of single floor in a Matterport3D Simulator.
Upper-Right: a sample view from an Agent’s camera; blue discs indicate available nodes to
travel to. Lower-Right: an example vln instruction from a Room-to-Room (R2R) dataset. [4]
Image taken from Matterport3D Simulator GitHub repository [5].

Continuous Environment. In a continuous space there are no obvious edges/graphs to traverse
and exploit. Agent’s location is unrestricted to nodes set, and we get data from the environment
by infinitesimal movement of the Agent. Data here are more voluminous and fine-grained from
the fine-grained sequences of actions as reported by Krantz and Wijmans et al. Continuous en-
vironment for the same scene and instruction+paths and collected datasets are shown in [9]. A
removal of nav-graph abstraction provides a richer selection of Agent’s action space definition.
Krantz and Gokaslan et al. investigated 6 action space for a Waypoint Prediction Network [20]
as shown in Figure 2.3. 6 action space variants for Waypoint Prediction Network (WPN) in a
continuous environment. At each times-tep the Agent receives a panoramic RGB-D observa-
tion as a set of 12 images from 12 evenly spaced angles. The Agent can select one of these
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angles as its new heading. Additionally, it chooses an offset for a heading along with the step
distance [20].

Figure 2.3:

1. Offset and step distance are real numbers, meaning an Agent is able to step anywhere
within a continuous toroid.

2. Heading offset remains to be of continuous nature, but the step distance is made discrete.

3. Both the heading offset and step distance are discrete.

4. Step distance is discrete, but heading offset is fixed to 0°, resulting in only 12 angles an
Agent can turn to.

5. Step distance is fixed to a constant value, whereas heading offset is continuous.

6. Both the step distance and heading offset are constant.

[20]

Examples of Continuous Space simulators: AI2-THOR - a simulation platform of near photo-
realistic 3D indoor scenes, which uses front-end Python API and back-end Unity [21]. Another
case is Habitat software stack, which contains a low-level Habitat-Sim and high level Habitat
python library [22].

2.3 Scene Datasets
For the Agent to navigate in the indoor environment we would need to know the floor layout,
furniture locations, color of walls, etc. Such an independent layout is referred to as a scene.
A scene can be as small as a single room or it can be a whole building. Of course, we would
like an entire dataset of various scenes for our training. There are available open-source scene
datasets which can be separated into two categories: synthesised and real-life photos / real world
reconstructions.
Synthesised Scenes. Synthesised scenes utilise work of 3D artists to manually create models
and textures for each object type. This draws a lot of similarities with how scenes are created in
video games. Synthesised scenes have wide appearance varying from simplistic to near photo-
realistic. Objects possess high level of interactability: they can easily be manipulated, replaced
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and even have their textures (materials, colours) switched - which gives an enormous degree
of variance for data augmentation [21]. The downside is, naturally, not having a 100% visuals
of the real world. This may cause trouble when transferring Agents from simulations into
reality. AI2-THOR framework operates with a selection of synthesised scene datasets, which
were specifically created for it: iTHOR, RoboTHOR, ProcTHOR and ArchitecTHOR [21] .

(a) A render from a Lani dataset [23].
Notice that it is an outdoor scene

(b) AI2-THOR is able to randomise materials of ob-
jects in the scene, quickly augmenting data. [21]

Figure 2.4: Examples of synthesised scenes

Real-world Reconstructions. In Real-world Reconstructions scenes are based on the photos
(RGB-D preferred) of real-world buildings. 3D meshes are then generated to match the existing
counterpart. Such scenes undoubtedly represent reality, although the appearance is dependent
on the quality of the photos used for reconstruction. The objects in the scene do not possess
the same level of interactability as with the case of fully synthesised items, yet they still can
provide a source of physical collision to an Agent. There are ways to augment such datasets.
Tan et al. have introduced data augmentation technique called Environmental Dropout, where
instances from a particular class of objects are masked off from a visual observation, as shown
in Figure 2.5 [6]. Environmental Dropout introduces more variance among the scenes, so a
trainable model could generalize more. An example of a photo-reconstructed scene dataset is

Figure 2.5: Environmental Dropout, where all chairs are masked-out from the view [6].
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Matterport3D [24], which lay the basis for Matterport3D Simulator [4]. The dataset contains
194000 RGB-D images from 10800 panoramas. The images were taken using a Matterport
camera mounted on a tripod inside 90 different buildings (in their indoor entirety) such as pri-
vate homes, offices and churches. The dataset also provides textured mesh reconstructions of
buildings documented (24727520 textured triangles). Additionally, captured objects and build-
ing elements possess instance-level semantic annotations from a list of 40 possible labels [24]

Figure 2.6: Examples of data contained within Matterport3D dataset. Image taken from Mat-
terport3D GitHub.io project page [7].

2.4 Instruction and Path datasets
In the VLN task, language instruction is given to an Agent for navigation. Each instruction has
a ground truth path, which the model learns to predict during the training. A dataset with input
as language instruction and output as path is available for public use. Besides Matterport3D
Simulator, a Room-to-Room (R2R) dataset was released to train models. The dataset contains
7189 paths, which traverse no less than 4 nor more than 6 edges in the related nav-graph,
while also being at least 5m long (in terms of a continuous environment). Each path has 3
different navigation instruction, written by actual humans, resulting in 21567 instructions of an
average word length of 29 words. An example of an instruction from R2R can be seen in Figure
2.2 (Lower-Right corner). Even though, the original R2R dataset was created for a Discrete
Environment (Matterport3D Simulator), the research group has suggested the same dataset can
be applicable in a Continuous Environment [4]. As part of a VLN-CE project, aimed at porting
VLN task from Discrete Environment of Matterport3D Simulator into the realm of Continuous
Environment created through Habitat, the R2R dataset was transferred into R2R VLNCE. In
total 77% of original R2R paths were deemed navigable in Continuous Environment and were
successfully transferred [9].

R2R dataset overtime has encounter several routes of development. R2R-EnvDrop was in-
troduced, where along with Environmental Dropout exercised onto Matterport3D new paths
were generated with corresponding instructions using automated speaker model [6]. Over
14000 new trajectory+instruction were created in such a manner. Later, these additions were
ported to R2R VLNCE as well with minor pruning (109, 0.07%) [12]. A concern is raised
for R2R dataset, that all paths are goal-oriented, i.e they follow the shortest possible. This is
an aspect a model can learn to exploit, without learning language understanding and the in-
structions [25]. To address this, two datasets have spawned with longer and indirect navigation
trajectories: Room-for-Room (R4R) [26] and Room-Across-Room (RxR) [27]. The latter was
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also ported into a Continuous Environment [28]. an alternative take, the R2R datapoints are
fractured into sub-instructions between each node pair along the paths creating a Fine-grained
R2R dataset [29]. It is implied in a study by Raychaudhuri et al. that Fine-grained R2R is
also applicable in Habitat’s environment [1]. One disadvantage of R2R datasets is their lack
of object manipulation vocabulary. Since the Matterport3D scenes are static, an Agent cannot
move or otherwise utilise encountered objects. This makes R2R family datasets usable only
for the sake of learning navigation, i.e. learning to interpret instruction relating to Agent’s re-
location. In contrast to the non-interactive instructions of R2R dataset, AI2-THOR 2.0 based
Action Learning From Realistic Environments and Directives (ALFRED) utilises its dynamic
simulator and provides instructions aimed at manipulating objects. Verbs such as pick, open,
close, cut and clean are given to an Agent to execute. The dataset provides 120 scenes, 25743
language directives each describing one of the 8 055 action sequences, also referred to as expert
demonstrations. These demonstrations can be deterministically replayed in the simulator [8].

Figure 2.7: An example of an instruction from ALFRED being carried out in AI2-THOR sim-
ulator as depicted with 6 captioned framed. [8]
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3 Methodology

In this thesis we tackle the VLN task through implementations based on VLN-CE project with
R2R VLNCE. Using a Continuous Environment brings the implementation closer to real-time
environment. We start with simple navigation through shorter instructions and not considering
other object manipulation.

3.1 R2R VLNCE v1-3

The latest version v1-3 of R2R VLNCE was released on February 3rd, 2022. The dataset is
fractured into 6 splits and a file for word embeddings (50d GloVe [30]). Each split contains
datapoints referred to as episodes and additional data regarding vocabulary used in instructions.
Every split possesses a subset of 90 scenes from Matterport3D. Such subsets tell in how many
different scenes (buildings) episodes within a split take place. These subsets may or may not
overlap with each other. The splits are [12]:

• train: 10819 episodes, 61 scenes (overlaps with val seen, envdrop and joint train envdrop)

• val seen: 778 episodes, 53 scenes (both the episodes and scenes overlap with train, en-
vdrop and joint train envdrop)

• envdrop: episodes generated for R2R-EnvDrop, 146304 episodes, 60 scenes (overlaps
with train val seen, and joint train envdrop)

• joint train envdrop: fuse of train and envdrop splits, 1572321, 61 scenes

• val unseen: 1839 episodes, 11 scenes (no overlapping)

• test: used for VLN-CE Challenge [32], 3408 episodes, 18 scenes (no overlapping)

Each split consists of two .json files: {split}.json.gz and {split} gt.json.gz, where split is the
respective split’s name. Files {split}.json.gz have two keys ’instruction vocab’, which con-
tains information for instruction processing, and ’episodes’, which gives an array of individual
episodes. Episodes are also dictionaries themselves. Let us examine how an episode’s data is
structured in Table 3.1.

In contrast, the structure of a {split} gt.json.gz is much more simpler. Every key is an ’episode id’
which ties the data between the two .json files together. To each key corresponds another dic-
tionary of 3 keys, which can be studied in Table 3.2. One thing worth noting is that data from
{split} gt.json.gz file is not used in training. Instead, it is used in a few performance measure-
ments.

1this number is used in the configuration file [31], which uses this split for training, however simple math of
10819 + 146304 yields 157123
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Key name Value type Example Comment
’episode id’ int 1 Identification number for the episode for ease of reference

’trajectory id’ int 4

Identification number for the trajectory of
the path for ease of reference.

Reminder that a single trajectory can be used in multiple episodes
with different instructions

’scene id’ str ’mp3d/7y3sRwLe3Va/7y3sRwLe3Va.glb’
A reference to a 3D mesh file of a scene (building)

from Matterport3D dataset, where the episode takes place

’instruction’
dictionary with two keys:

’instruction text’ and
’instruction tokens’

{’instruction text’:
’Go around the right side...’,

’instruction tokens’:
[982, 141, 2202, ..., 0, 0, 0] }

The instruction for an Agent to perform during this episode.
’instruction text’ gives a human-readable text of the instruction,

whereas ’instruction tokens’ provides an array
of machine-interpreatable values

’start position’ an array of 3 float
[-16.267200469970703,
0.1518409252166748,
0.7207760214805603]

The global X, Y, Z coordinates in the scene, from where an
embodied Agent begins the episodes,
also the starting point of the trajectory

’start rotation’ an array of 4 float

[0.0,
0.0007963267107332633,

0.0,
0.9999996829318346]

Global rotation of an embodied Agent at the beginning
of the episode, represented in quaternion

’goals’

an array of dictionaries,
each dictionary contains

two keys:
’position’

and ’radius’

{ ’position’: [-12.337400436401367,
0.1518409252166748,
4.213699817657471],

’radius’: 3.0 }

There is usually only a single goal, therefore the array usually
has a single dictionary. A goal is represented by a point

in a scene.
Key ’position’ is the global X, Y, Z coordinates of the point in the scene.

Key ’radius’ represents how close an Agent must come to the point
for the goal to be considered reached, i.e.episode finished

’reference path’
an array, where each
element is an array of

3 float

[[-16.267200469970703,
0.1518409252166748,
0.7207760214805603],

...
[-13.907199859619140,
0.1518409252166748,

4.2282099723815920 ]]

This is the sequence nodes of a nav-graph, which are visited by a
Discrete Environment Oracle when it

goes towards the goal.
In other words - ground truth for Discrete Environment Agent

in an analogous episode.
Each node in the sequence is represented

with its X, Y, Z global coordinates in the scene

’info’ a dictionary
{’geodesic distance’:
6.425291538238525} Additional information, which can be used by simulator’s sensors

Table 3.1: A structure of a {split}.json.gz file’s episode, which is a datapoint in R2R VLNCE
dataset. [12]

Key name Value type Example Comment

’actions’ an array of ints [2, 2, 2, ..., 0]
Action sequence of an Agent to perform

in order to get from starting position
to goal in shortest path

’forward steps’ int 27
Number of ”FORWARD” actions
which an Agent takes throughout
the shortest path from start to goal

’locations’
an array, where each
element is an array of

3 float

[[-16.267200469970703,
0.1518409252166748,
0.7207760214805603],

...
[-12.644463539123535,
0.1518409252166748,
4.2241311073303220]]

A sequence of points, which an Agent
reaches after each action throughout
the shortest path from start to goal

Table 3.2: A structure of values inside {split} gt.json.gz file from R2R VLNCE dataset. Exam-
ple is given based on the resulted dictionary from key ’1’. [12]
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3.2 VLN-CE
Visual-and-Language Navigation in Continuous Environments (VLN-CE) is one of the projects
spearheading the idea of moving away from training VLN Agents in Discrete Environments for
the sake of better representing reality to an Agent with the use of Continuous 3D Environments.
It was released in spring of 2020 along with a related paper by Krantz and Wijmans, et al [9].
At the time of this thesis writing, the VLN-CE project provides:

• two Instruction and Path datasets with their corresponding challenges:

– R2R VLNCE dataset [12] and VLN-CE Challenge [32]

– RxR VLNCE dataset and RxR-Habitat Challenge [28]

• a GitHub repository [33] with starting code containing:

– 3 Neural Network (NN) models for Agent’s decision making, implemented with
PyTorch [34]

– algorithms for training, evaluation and inference of VLN Agents using provided
datasets, written in Python 3.6 [35]

– a multitude of configuration files with specific algorithm and NN model settings
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The project’s code is built on top of Habitat software stack, more specifically on version 0.1.7.
Developed by Facebook Research AI, by the time of this thesis writing, Habitat 3.0 (i.e. version
0.3.0) has already been released in late October of 2023. Habitat stack itself consists of two
repositories: low-level Habitat-Sim [36] and high-level Habitat Lab [37]. Most development
happens by extending habitat package from Habitat Lab, which addresses Habitat-Sim as the
core simulator [37]. We take a note, that the code inside the mentioned repositories is quite
convoluted, with a considerable amount of vague classes/abstractions, with little to no docu-
mentation (at least as far version 0.1.7 is concerned). Habitat Lab does provide an examples
package, yet a potential developer must manually go through thousands lines of code to study
the applications and ways of improving the stack. The body of an Agent is physically repre-
sented by a 1.5m tall cylinder with a 0.2m diameter. The body has a single, forward-mounted
RGB-D camera, with a 256×256 pixel resolution and 90° horizontal field-of-view [9]. The
body emulates a ground-based, zero-turning radius robot analogous to LoCoBot [38]. Initially,
the Agents movement is constrained with 4 low-level actions: move-forward 0.25m, turn-left
or turn-right 15° or stop action, which is invoked when an Agent considers the goal position to
be reached [9]. Such actions keep the action space simple and concise enough, while also being
replicable in real-life. If necessity arises, the action space model can be changed, since the un-
derlying Habitat-Sim is quite flexible with movement definitions. Another aspect of movement
is the absence of noise, meaning when an Agent attempts to move-forward, it will always move
0.25m (if there is no collision occurring of course). [9]

3.3 Task description
An Embodied Agent is given an episode from R2R VLNCE v1-3 dataset [12] to accomplish.
The episode places the Agent inside a simulated scene of Continuous Environment, which is one
of the virtually reconstructed buildings documented in Matterport3D [24]. The Agent inside the
scene is described by a current state, consisting of Agent’s current position and rotation within
the environment. The episode specifies the starting state of the Agent, as well as goal position
with a radius, which creates a sphere where the Agent must reach at the end of the episode.
The episode also provides a natural language (NL) instruction describing how to arrive at the
goal. For the Agent, the environment is only partially observable: the Agent is unaware of its
exact state in the scene, neither is it aware of the goal location; the Agent can perceive the scene
through an egocentrically mounted RGB-D camera. The Embodied Agent can move through
the scene with a set of 4 basic actions: move-forward 0.25m, turn-left or turn-right 15° or stop
action. The actions are encoded with integers, such that: 0 stands for stop, 1 - move-forward,
2 - turn-left, 3 -turn-right. The scene is static. The Agent’s body can collide with the objects
in the scene, but cannot move, manipulate or damage them. The Agent possesses a navigation
algorithm, referred to as policy, which it uses as a decision-making tool for reaching the goal.
Throughout an episode, at each time-step the Agent receives a set of observations: an RGB-D
image from its camera in regards to Agent’s current state; an NL instruction remaining constant
throughout the episode. The Agent can use the observations and knowledge of its previous
actions to feed them to the policy to make optical decision to choose best action (one out of 4
available) for reaching its goal. The whole navigation is represented as a sequence of decision-
making and action tacking. The episode terminates either when the maximum number of time-
steps is reached or when the Agent executes a stop action, meaning that the Agent considers
having arrived at the goal.
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3.4 Policy Development
The crucial aspect of VLN Embodied Agent creation is the development of Agent’s policy.
VLN-CE project proposes using Machine Learning (ML) as the main method and Deep Neu-
ral Networks (DNN) as the implementation basis. ML models require training and evaluation
procedures, which the VLN-CE project provides as previously mentioned. The project utilizes
Imitation Learning, where the ML model learns to imitate an Oracle - an algorithm able to make
the best decisions at each time step by the use of data unavailable to the Agent. The training
procedure are divided into two stages: training data generation and model updating. To see the
description of the first stage, along with the classes in use, please look at Figure 3.1.

The code for the second training stage (model updating) is located in the same Trainer Class.
Previously created LMDB is read in batches of per episode grouped data points. The loss
value is calculated as a sum of losses throughout every time-step in an episode recorded.
Agent’s sensor observations along with their corresponding previous actions are fed to the
policy to get predictions. Predictions are compared with Oracle sensor’s created correct next
actions and with cross-entropy loss function the model receives iterative updates (specifically
torch.nn.functional.cross entropy [40] is used).

This is the very basic training procedure. VLN-CE offers a few additional optional improve-
ments:

3.4.1 Inflection Weights
The model can focus on mimicking long repeated sequences of the same action and miss a
necessary change of operation. For example, the model outputs a constant stream of move-
forward actions and fails to make a turn in time. To promote timely decision making Inflection
Weighting was introduced. The aim is to increase the learning impact of a time-step, when
inflection took place along the correct path (i.e. actiont−1 ̸= actiont). Such time-steps, named
inflection points, during loss calculation are multiplied by an additional weight N/ni, where
N is the total number of time-steps present in the whole set of correct paths and ni is the total
number of inflection points, meaning the Inflection Weight is an inverse frequency of inflection
points in the dataset [41]. Fortunately, VLN-CE project provides a pre-computed Inflection
Weight to go along with their dataset.

3.4.2 Progress Monitor
An accomplished episode is the episode, where the Agent issued a stop action within the success
radius of the goal point. We encourage such behavior in our model. One way is to explicitly
supervise the model with a normalised distance from the Agent to the goal. The normalised
distance is measured as 0 at the starting point and becomes closer to 1 the closer the Agent
gets towards the goal. Normalised distance can be a negative number if the Agent moves away
from the goal further than the starting point. The supervision is performed as an auxiliary loss.
The model is modified to also estimate the mentioned distance. At each time step the real and
estimated normalised distances are put in a mean squared error, summed up across an episode,
and used alongside the cross-entropy error resulting from supervising action decision [42].
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Figure 3.1: A scheme for Agent policy training stage 1: training data generation. The scheme
depicts the data flow and the main class objects involved (multiple other class instances are
left unmentioned for the sake of clarity). Class objects are represented with rectangles and
their background colour shows to which project/repository/library they belong. The dataflow is
shown with coloured lines and arrows(triangles) give output/input direction.
The main purpose of this stage is to store at each time-step a datapoint, which contain an agent
observations (RGB-D image + Instruction); action, performed in a previous time-step; a correct
action to perform at this time-step. All datapoints are grouped by episodes and are kept in a
chronological order. The generated data is stored in a Lightning Memory-Mapped Database
(LMDB) [39] for later use in stage 2.
The program can run several simulations in parallel by creating several Environments, which
run synchronously within Vector Env class object.
At each timestep the Trainer Class receives correct next actions and agent’s sensor observations
for each instance of Environment. The Environments each in turn receive a new action to make
an Agent to perform in order to generate a new set of agent’s sensor observations and correct
next actions. The correct next action in one time-step becomes action to perform, as well as
previous action in the next one. Note, that Agent policy is fed the necessary inputs, however its
output in this simple case is not used anywhere.
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3.4.3 Dataset Aggregation
During training, the Agent executes only the correct actions dictated by the Oracle sensors.
Therefore the observations are confined purely to the ground truth path. Thus the Agent is
never exposed to the full extent of available positions in the Continuous Environment with
their respective observations. In addition, during tests or evaluations, a single mistake can
cause the failure of an entire episode. Agent’s policy has never experienced an incorrect action
and never learned to recover. To address this the Dataset Aggregation (DAgger) procedure
is implemented in Stage 1 of training. The training is carried out in several analogous DA
Iterations, where at each iteration we perform both of the described stages; all generated training
data is accumulated throughout the DA Iterations; during training data generation there exists a
chance (it starts as 0 on the first DA Iteration, but eventually grows to 1), that the correct next
action is replaced with an action predicted by the Agent policy at the current development state
(this is why the policy receives the input data at each time-step). The replaced action is likely
to differ from the Oracle’s expertise, therefore the resulting path will deviate from the ground
truth path [43]. The pseudo-code of DAgger in VLN-CE is given:

#Initialise starting values from configuration file.
P ← [0;1];
N ← N+;
policy0.init();
LMDB.begin();

#Begin loop of DA Iterations.
for n in 0...N do

#Set up exponentially decaying β
β ← P n;

#Begin loop of modified training stage 1.
for each time-step in each episode do

correct next action← Oracle Sensor output;
observation← Simulator;
predicted next action← policyn.predict(observation);

With likelihood P (β): action to perform← correct next action;
else: action to perform← predicted next action;

LMDB.add(observation, correct next action);
Simulator← action to perform

end
#Perform training stage 2.
policyn+1 ← policyn.update(LMDB.data)

end
Algorithm 1: Pseudo-code for training procedure when DAgger is involved. DA Iterations
can be viewed as entire training runs, which share a single LMDB, that gets continuously
updated over time. Meaning that the last policy is being trained on every trajectory created.
We can see that the first DA Iteration functions exactly like a standard training procedure
due to β = 0 (i.e. only the correct actions are performed).
Note that for the sake of clarity operations involving previous actions are removed from this
pseudo-code.
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3.5 Cross-Modal Attention Model
After observing the data and the procedures for policy training, we can move on to examining
the actual ML model, which will be used as the Agent’s policy. VLN-CE repository provides 3
models. This thesis focuses on the Cross-Modal Attention (CMA) model, which is deemed as
the baseline model for VLN-CE Challenge [33]. The model takes as input separately RGB and
Depth images, tokenized instruction and previous action (at−1) to predict the next action (at) as
shown in Figure 3.2.

Vision Encoding. RGB image (a 256×256×3 array) is encoded using ResNet50 [44] pretrained
for image classification task based on ImageNet (a huge database of labeled images) [45], which
gives the basis for detecting semantic visual features. Depth image (a 256 × 256 array) is also
encoded with ResNet50, although modified for point-goal navigation tasks. This task shares
similar aspects to our VLN task: an Embodied Agent is placed at a random location in a previ-
ously unknown scene (Continuous Environment) and has to navigate to the specified goal using
egocentric vision, however instead of an NL instruction the Agent possesses a GPS+Compass
sensor, which guides the Agent to the goal [46]. The visual encodings are processed twice to be
fed separately to GRU and Visual Attention blocks.

Instruction Encoding. The NL instruction string is fractured into an array of fixed size, where
each positive integer represents a machine-comprehensible token (as depicted in Table 3.1, ’in-
struction’ line). Tokens are then replaced with corresponding GLoVE embeddings [30], which
transforms the array into a sequence of 50D vectors. Values within the vectors denote the se-
mantic similarity between the words. These vectors are created on purely text, i.e. based on
co-occurrence in a huge text corpus; images, sounds, etc related to the words were not used. The
resulting array is then passed onto the bi-directional Long Short-Term Memory [47] encoder.

GRU. The model has two Gated Recurrent Units (GRUs, also known as RNN Encoder-Decoder)
[48], which grant the model memory aptitude. The first one (left-most on the scheme) is respon-
sible for processing visual information. The second one makes the final decisions based on all
previous computations. Note, that in the actual implementation the second GRU does not out-
put the predicted action directly. Instead it outputs 512 features, which are then fed to a Fully
Connected layer outputting 4 features (corresponds to the number of possible actions), which
in turn flow into a modified Categorical Distribution class from PyTorch [49] in order to finally
retrieve the predicted action.

Attention Blocks. The model uses Attention to better focus on the task execution at a given
time and circumstances. It is implemented as a scaled dot-product attention:
Attention(Q,K, V ) = softmax(QKT

√
dk

)V , where Q,K and T are vectors (or sets of vectors packed
together as matrices), dk is the dimension of both vectors Q and K. [50]
Instruction Attention takes Q based on the output of the first GRU, K and V are based on in-
struction encodings. There are separate Visual Attention Blocks for RGB and Depth. A Visual
Attention takes Q based on the Instruction Attention output, K and V are based on correspond-
ing visual encodings passed through a 1D Convolutional layer.
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Figure 3.2: A simplified scheme representing the general architecture of Cross-Modal Attention
Model. Image taken from the original paper [9]. See section 3.5 for descriptions.

3.6 LAW-VLNCE
Supervision of correct actions during training in VLN-CE code is carried out by a Greedy
Geodesic Follower [51], which creates the shortest path toward the goal. The shortest path, how-
ever, does not always constitute correctly following a given instruction, as depicted in Figure
3.3. Such inconsistencies may be detrimental to policy learning to understand NL. To solve this
problem a fork project from VLN-CE was created named LAW-VLNCE, where LAW stands for
Language-Aligned Waypoint. It introduced a new sensor for the use as an Oracle. This sensor
tries to sequentially lead an Agent along the intermediately placed waypoints, before leading
towards the goal. These waypoints are either taken from the ground truth file ({split} gt.json.gz,
’locations’ key from the respective episode instance) or from the ’reference path’ specified in the
episode ({split}.json.gz). Usage of LAW paths in training leads to policy better comprehending
NL as hinted by increased performance compared to the standard VLN-CE. [1]

3.7 Evaluation Metrics
There are several measurements, that can describe how successful an Agent (or more specif-
ically its policy) at solving VLN tasks. Here is a list of them (the same were used in LAW-
VLNCE original paper [1]):

• Trajectory Length (TL) or Path Length: length of a path, which the Agent traversed
during an episode.

• Navigation Error (NE): distance to goal from the Agent at the end of an episode.

• Success Rate (SR): rate of an Agent finishing an episode within a specified radius from
the goal (3m usually).

• Oracle Success Rate (OS): rate of an Agent entering within a specified radius from the
goal (3m usually) at any point in time.
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Figure 3.3: Difference between a path created with a sensor, which navigates towards the
goal position in a shortest way possible (red), and a path which follows intermediate waypoints,
which are placed in respect to the NL instruction (blue). Additionally, several Agents are spread
throughout a scene with coloured arrows showing the direction, in which the Agent would move
listening to commands of each sensor. Image is taken from [10].
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• Success weighted by inverse Path Length (SPL): success weighted by trajectory length
relative to shortest path trajectory between start and goal. Computed over the whole
evaluated set as 1

N

∑N
i=1 Si

li
max(pi,li)

, where N is the number of evaluated episodes in the
set, Si is the binary indicator for success of an episode i, li is the shortest path distance
from the start to goal in an episode i, pi is the path Trajectory Length of episode i [52].

• Normalized dynamic-time warping (nDTW): evaluates on a scale from 0 to 1 how the
Agent’s trajectory matches with the ground truth, where 1 means both trajectories are
identical [53].

• Success weighted by nDTW (SDTW): same as nDTW, however it is considered a 0,
when the episode was unsuccessful [53].

• Waypoint Accuracy (WA): fraction of Language Aligned Waypoints the Agent has cor-
rectly visited in its path, the Agent must come close to at least 0.5 meters from a waypoint
for it to be considered visited [1].

3.8 Proposed Method
We, humans, have developed an intuition for navigating indoors. When a person hears: ”Go
down the corridor and enter the third room” - even without seeing the environment, they can
already expect to walk some time forward through the corridor, there will be doors on the side-
walls since doors connect rooms, and eventually they are going to turn either left or right to
face one of the doors and once again step forward to enter a room. Although we cannot say
exactly how far must one go forward or at what angle to turn, we already built up an idea of
a possible path. And this idea gets more and more fleshed out as the person starts seeing the
corridor with the doors. We are able to create such ideas initially, because we are accustomed
to a context, which is present among the indoor environments and interior furniture: a toilet is
usually placed in the bathroom, desk lamps reside on a table, corridors lead to doors and doors
to other rooms. Another thing, since the whole instruction is provided at once, as shown in the
previous example, information about the layout of the environment ahead of us can be extracted
from the NL instructions. Moreover, one can imagine their own state within the environment
in the future. Vision only bolsters intuition, when, for example, one catches glimpses of other
rooms through doorways or corridors.

Similar intuition we would like to create within the policy of an Embodied Agent. And we
would like to create it explicitly. We should actively encourage the trainable model to think
about the states currently unobservable and its operations in the future. We can implement the
development of intuition by upgrading the model to predict more than just an action to per-
form. We’ve already seen such an example with the addition of Progress Monitor, where the
model develops intuition of ”how far away the Agent is from the goal”. Another example can
be brought from a separate study by Song, et al [54], where a model from a single depth image
simultaneously predicted occluded 3D shapes of observed object, while also giving each object
semantic labeling. As a result this model outperformed all other models, which tried to do those
two tasks separately. Another perk of having additional explicit outputs is, that we can receive
more hints of the model’s reasoning during application.

In the scope of this thesis the explicit intuition will be constructed by updating the model to pre-
dict not only one action to perform for current time-step, but for several following time-steps
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ahead. In other words: at each time-step t from an input of inputt the model will output a set
{ât, ât+1, ..., ât+n}, where ât is an action, which the model predicts the Agent to perform at the
end of time-step t. By supervising the model predicting actions of near future time-steps, we
hypothesize that the model will ”look ahead”, when making each decision, positively impact-
ing the performance.

Modifying the baseline model was not a big issue, it was a simple change of the output size of
fully-connected layer, which comes after the second GRU block. The size was changed from
number of possible actions (4) to number of possible actions× number of intuition steps, where
intuition steps mean the time-steps for which the model makes predictions. The question now
arises: how to create sets of corrected actions at each time-step, including the cases when DAg-
ger is used, and considering possible collisions. We can utilise an already existing Oracle sensor
and habitat-sim. Two methods were proposed:

1. At each time-step during training stage 1 the Agent’s state (position and rotation in the
environment) is saved, then for a number of additional intuition time-steps the Agent fol-
lows the commands of the Oracle sensors, records the actions taken and then the Agent is
teleported back to the original saved state.
Pros: easy to implement; habitat-sim takes on all the computations for tracking the
Agent’s state and collisions; can utilise noisy actuation, if necessity arises.
Cons: every additional intuition time-step will generate new Agent observations, wasting
computational time.

2. We create another Embodied Agent, which is a copy of the first one, although it is blind,
i.e. it lacks camera. We refer to this second Agent as Geist. This method starts out similar
to the previous one, but the during the intuition time-steps the movement is performed
only by Geist.
Pros: No wasted computations for generating unused visual observations; habitat-sim
supports multiple Agents; Agents do not collide with each other and are not rendered in
camera images.
Cons: HabitatSim and Task from habitat-lab do not support multi-Agent operations out-
of-the-box.

Out of the two methods, the second one was selected due to the prospect of faster performance.
Additionally, the LAW sensor from LAW-VLNCE was chosen for the position as the Oracle
sensor.

3.9 Design of Experiments: INTUIT-VLNCE
The code for our approach resides in a GitHub repository named INTUIT-VLNCE [55]. It is
a fork project of LAW-VLNCE [10] (which it is in turn a fork of VLN-CE [9]). The name
INTUIT-VLNCE takes on the naming conventions of previous projects dealing with VLN tasks
in a Continuous Environment. The INTUIT part represents our strive to develop explicit intu-
ition, while also containing an easter egg reference to the Author’s institute by containing its
acronym (Tartu University Institute of Technology - TUIT). This project requires independent
installation of habitat-lab [37] and habitat-sim [36] both of versions v0.1.7. The development
of the code was performed on the author’s PC.

The changes this repository introduces in short are:
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• HabitatSimDual - a child class of HabitatSim from habitat-lab, which is capable of cre-
ating a second Agent without vision (Geist) and is able to issue commands to them.

• NavigationTaskDual - a child class of NavigationTask from habitat-lab, able to operate
with at least two Agents (was not tested with more than two Agents).

• VLNCEDaggerIntuitionEnv - an environment class used for training. When an action is
received, the Geist is teleported to the position of the main Agent, then the Geist generates
a sequence of correct actions for several time-steps ahead by moving towards the goal
listening to the Oracle sensor (LAW sensor to be specific). After the sequence of correct
actions is generated, the input action is sent to the main Agent to execute, regardless of
what the Geist has generated. This allows to use DAgger, when the Agent must sometimes
perform incorrect actions.

• Intuition Policy - a modified version of CMA model from the original VLN-CE paper [9],
which predicts several actions for the current and future time-steps.

• DaggerLawIntuitionTrainer - a trainer class, which is able to utilise all of the addi-
tions above, along with DAgger. Based on the trainers form VLN-CE and LAW-VLNCE
projects.

• several configuration files for training and evaluation parameters:
intuition config/cma pm aug.yam, intuition config/cma pm da tune.yam,
vlnce task aug intuit pano.yaml and vlnce task intuit pano.yaml.

For every instance of training we use Progress Monitor and Inflection Weights. We calculate
loss in batches of episodes, which contain recorded time-steps. The entire loss function can be
written down as:

Loss(X, Y, P̂m, Pm) = Lossaction(X, Y ) + LossPM(P̂m, Pm)

Lossaction(X, Y ) = −1

I

I∑
i=0

B∑
b=0

1∑T
t=0 ωb,t

T∑
t=0

ωb,tlog
exp(xt,b,i,yt,b,i)∑C
c=0 exp(xt,b,i,c)

LossPM(P̂m, Pm) = − α

Nb

B,T∑
b=0,t=0

(p̂mb,t − pmb,t)
2

ωb,t =

{
ω, inflection point
1, otherwise

• T - number of time-steps in an episode (Tmax number of time-steps of the longest episode
in batch)

• B - Batch size, number episode in a batch

• I - number of intuition-steps, how many actions does a model predict

• C - number of possible actions

• Nb - number of inflection points present in an episode

• X - matrix containing unnormalised logits of action predictions of size Tmax, B, I , C
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• Y - matrix containing correct actions of size Tmax, B, I

• P̂m - matrix containing PM predictions of size Tmax, B

• Pm - matrix containing correct PM values of size Tmax, B

• ωb,t - inflection weight at time-step t in an episode b

• ω - hyper-parameter for weights at inflection points

• α - hyper-parameter for scaling PM loss

For action loss we essentially compute loss for each place of predicted action in intuition action
sequence at every time-step in every episode and then averaging them. Additionally, Adam
optimiser [56] is utilised in every instance of training just like in the VLN-CE implementation
[9].

3.10 Training and Evaluation
All training and evaluation were carried out with the assistance of Tartu University’s High Per-
formance Computing (HPC) Center, which provided access to Rocket HPC cluster [57]. HPC
services have a monetary cost related to them [58]. Luckily HPC Center provides free credit
of 1000 Euros to the students from the University of Tartu each year. The Author was not in-
terested in exceeding this limit, therefore it also affected the selection of the VLN-CE task and
R2R dataset. The cluster consists of nodes, which the program must request for the sake of
computational resources. Every training or evaluation run has requested one of 6 GPU nodes
from the Falcon series. The hardware belonging to those nodes is:

• 2 x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (48 cores total)

• 512 GB RAM

• 5TB of local SSD storage

• Infiniband:

– Falcon 1-3 – 2x 40 Gbps each

– Falcon 4-6 – 5x 100 Gbps each

• 24x NVIDIA Tesla V100 GPUs:

– Falcon 1-3 versions have 16 GB of VRAM

– Falcon 4-6 versions have 32 GB of VRAM

[57]
The training of our policy follows the training performed in the paper for LAW-VLNCE [1]. It
is divided into main training phase and fine tuning phase.
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3.10.1 Main Training Phase
In this phase we initialise the model and train it on the joint train envdrop split of
R2R VLNCE v1.3. During the training PM and IW are used. Oracle sensor is LAW-sensor.
At the end of each training epoch, the model’s current state is saved as a checkpoint. After
the training, all checkpoints would be evaluated on val seen splits (to see how well the model
learned from the training data) and then on val unseen to measure actual performance. Eval-
uations will use metrics, discussed in section 3.7 along with the average number of time-steps
taken, out of which nDTW is considered the most important one. The best performing check-
point in terms of nDTW will be used in the fine tuning phase.

Related configuration and SLURM files:

• vlnce baselines/config/paper configs/intuition config/cma pm aug.yaml

• habitat extensions/config/vlnce task aug intuit pano.yaml

• trainjob.sh

• evaljob.sh

Important hyperparameters:

• Maximum time-steps per episode: 7500 during training (to account for extra steps per-
formed in the VLNCEDaggerIntuitionEnv), 500 during evaluations

• Success Distance: 3 meters

• Number of simultaneous Environments: 8

• Number of training Epochs: 45

• Batch Size: 5 (how many episode within a batch for loss calculation)

• PM α: 1.0

• IW ω: 3.2 (as was calculated in [9])

• Number of intuition Steps: 15

• Learning Rate: 2.5e-4 (as was used in previous papers [9])

Training and evaluation on val seen took place on Falcon 5 node, whereas evaluation with
val unseen on Falcon 2.

Note: During the training stage 1, the program encountered an error after processing 47% of
joint train envdrop episodes. The author considered it to be a minor issue, because a seem-
ingly sufficient number of episodes were processed: 73581 out of declared 157232.
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3.10.2 Fine tuning Phase
The best performing checkpoint (nDTW metric) was selected as a starting ground. During this
training LAW-sensor, PM and IW were used again. In addition DAgger is activated as well. In
this phase 5000 episodes from train split are used. As previously, a checkpoint is saved at the
end of every Epoch, and all checkpoints are evaluated identically to the previous phase.

Related configuration and SLURM files:

• vlnce baselines/config/paper configs/intuition config/cma pm da tune.yaml

• habitat extensions/config/vlnce task intuit pano.yaml

• trainDA.sh

• evaljobDAtune.sh

Important hyperparameters:

• Maximum time-steps per episode: 7500 during training (to account for extra steps per-
formed in the VLNCEDaggerIntuitionEnv), 500 during evaluations

• Success Distance: 3 meters

• Number of simultaneous Environments: 8

• Number of DA Iterations: 10

• Number of training Epochs per DA Iteration: 4

• DA P: 0.5

• Batch Size: 5 (how many episode within a batch for loss calculation)

• PM α: 1.0

• IW ω: 3.2 (as was calculated in [9])

• Number of intuition Steps: 15

• Learning Rate: 2.5e-4 (as was used in previous papers [9])

Note: Evaluation on val unseen was performed in two parts, because it was initially launched
with 7500 Maximum time-steps per episode, instead of 500.

Falcon 6 node was used for training. Falcon nodes 4, 2 and 1 were used for evaluation on
val seen, 1st and 2nd parts of val unseen respectively.
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Figure 3.4: An example of how an instruction contains information about the future based
on a VLN application with RxR and Matterport3D Simulator. The image is a top down view
on a scene segment with an Agent (black triangle). There are also coloured visualisations of
directions an agent have and will have viewed; the colour corresponds to a slice of an instruc-
tion. While being in a green zone, the Agent can already have an intuition about moving and
observing the scene at cyan and blue zones (at least). Image taken from [11].
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4 Experimental Results

4.1 Results in the Main Training Phase
Each epoch was provided with the same set of 14700 batches. In total 662500 batches were
processed overall. The first stage of training took around 55 hours of computing to complete
(until the error) and the second - 57.5 hours. The best performing checkpoint is under number
43.

Figure 4.1: Loss values through out the whole Main Training Phase. Black vertical lines denote
the end of every 5th Epochs. The purple vertical line represent the end of 43rd Epoch, i.e. the
best performing checkpoint.
The majority of loss was contributed purely by action loss. Auxiliary loss was contained within
the borders of [0.000489; 0.698321] and average value of 0.00507. Thus also depicting auxil-
iary loss (and therefore action loss as well) independently does not seem necessary.
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Checkpoint
number

Val Seen Val Unseen
SR↑ OS↑ SPL↑ nDTW↑ sDTW↑ WA↑ NE↓ TL↓ Steps↓ SR↑ OS↑ SPL↑ nDTW↑ sDTW↑ WA↑ NE↓ TL↓ Steps↓

43 0.28 0.36 0.26 0.49 0.24 0.45 8.25 8.37 68.7 0.22 0.28 0.21 0.46 0.19 0.39 8.44 7.80 69.92

Table 4.1: Main Training Phase best checkpoint metrics

Figure 4.2: Results for Success Rate (SR) and Oracle Success Rate (OS) metrics received
from the evaluations. The bigger rate is considered the better one. By comparing SR to OS on
the same evaluation set, we can see how often has an Agent reached the goal, but did not issue
a stop action in time.
The purple vertical line marks the best performing checkpoint (43).
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(a) Average nDTW and sDTW.
The bigger value is considered the better one.

(b) Success weighted by inverse Path Length
(SPL).

The bigger rate is considered the better one.

(c) Average Trajectory Length (TL).
The smaller value is considered the better one.

(d) Average Navigation Error (NE).
The smaller value is considered the better one.

(e) Average number of time-steps taken.
The smaller number is considered the better one.

(f) Average Waypoint Accuracy (WA).
The bigger value is considered the better one.

Figure 4.3: The remaining metrics per evaluated checkpoint from the first phase of training.
The purple vertical line marks the best performing checkpoint (43).

4.2 Results in the Fine tuning Phase
Each DA Iteration generated 1000 additional batches of training episodes. In total 220000
batches were processed. The whole program took 33 hours of computing to complete. The best
performing checkpoint is under number 5.
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Figure 4.4: Loss values throughout the whole Fine tuning Phase. Black vertical lines denote the
end of every DA Iteration. The purple vertical line represents the end of the 2nd epoch during
the 2nd DA Iteration, i.e. the best-performing checkpoint.
The majority of the loss was contributed purely by action loss. Auxiliary loss was contained
within the borders of [0.0; 0.8104] and average value of 0.0125. Thus also depicting auxiliary
loss (and therefore action loss as well) independently does not seem necessary.

Figure 4.5: Results for Success Rate (SR) and Oracle Success Rate (OS) metrics received
from the evaluations. The bigger rate is considered the better one. By comparing SR to OS on
the same evaluation set, we can see how often has an Agent reached the goal, but did not issue
a stop action in time.
The purple vertical line marks the best performing checkpoint (5).
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Checkpoint
number

Val Seen Val Unseen
SR↑ OS↑ SPL↑ nDTW↑ sDTW↑ WA↑ NE↓ TL↓ Steps↓ SR↑ OS↑ SPL↑ nDTW↑ sDTW↑ WA↑ NE↓ TL↓ Steps↓

5 0.31 0.39 0.29 0.52 0.27 0.47 7.27 8.81 88.5 0.26 0.32 0.25 0.48 0.23 0.41 8.04 8.16 405.0

Table 4.2: Fine tuning Phase best checkpoint metrics

(a) Average nDTW and sDTW.
The bigger value is considered the better one.

(b) Success weighted by inverse Path Length
(SPL).

The bigger rate is considered the better one.

(c) Average Trajectory Length (TL).
The smaller value is considered the better one.

(d) Average Navigation Error (NE).
The smaller value is considered the better one.

(e) Average number of time-steps taken.
The smaller number is considered the better one.

(f) Average Waypoint Accuracy (WA).
The bigger value is considered the better one.

Figure 4.6: The remaining metrics per evaluated checkpoint from the fine tuning phase of train-
ing. The purple vertical line marks the best-performing checkpoint (5).
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5 Analysis and Discussion

5.1 Analysis of Results in the Main Training Phase
Looking at nDTW and WA values of the best-performing checkpoint (Table 4.1), we can say,
that the Agent follows the correct path only for 46% of it. OS shows, that only 28% of the time
does an Agent come close to the goal. With the addition of a relatively low score of average
time-steps we can conclude, that the majority of episodes failed due to the Agent executing a
stop action prematurely (i.e. before coming close to the goal). Evaluations on val seen split do
not suggest an overfitting.

Model
Val Seen Val Unseen

SR↑ OS↑ SPL↑ nDTW↑ NE↓ TL↓ SR↑ OS↑ SPL↑ nDTW↑ NE↓ TL↓
Main Training

Phase checkpoint
43 (Ours)

0.28 0.36 0.26 0.49 8.25 8.37 0.22 0.28 0.21 0.46 8.44 7.80

CMA PM Aug [9] 0.27 0.36 0.25 0.47 8.29 8.49 0.24 0.30 0.22 0.46 8.42 7.68

Table 5.1: Comparison between our best checkpoint at 1st phase and an equivalent model from
VLN-CE paper [9]. We skip metrics, that are not reported for the alternative model. Our model
performs slightly worse, than the alternative. This may attributed to the incomplete training set
our model used. We cannot compare with a similar model from LAW-VLNCE paper, because
they only report results after fine-tuning, [1].

5.2 Analysis of Results in the Fine Tuning Phase
We can apply the same criticism to this phase’s best checkpoint as we did with the previous one,
although it should be pointed that the performance did in fact improve. Another thing to note is
the increase in average time-steps taken and average trajectory length. A large average number
of time-steps in val unseen also suggests that an Agent did not issue a stop action for a long
time in some episodes, possible even hitting the maximum time-step limit.

We can observe from Figures 4.5 and 4.6 that consecutive DA Iterations after the second one
harmed the model’s performance. The root of the problem can be that DAgger over-saturates
the training data with faulty trajectories created by an inexperienced model. Figure 4.6e hints
at the later checkpoints’ behaviour: they terminate episodes very early on, only after a few
time-steps.
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Model
Val-Seen Val-Unseen

SR↑ OS↑ SPL↑ nDTW↑ sDTW↑ WA↑ NE↓ TL↓ SR↑ OS↑ SPL↑ nDTW↑ sDTW↑ WA↑ NE↓ TL↓
Fine tune

checkpoint 5
(Ours)

0.31 0.39 0.29 0.52 0.27 0.47 7.27 8.81 0.26 0.32 0.25 0.48 0.23 0.41 8.04 8.16

goal [1] 0.34 0.44 0.32 0.54 0.29 0.48 7.21 9.06 0.29 0.36 0.27 0.50 0.24 0.41 7.60 8.27
LAW pano [1] 0.40 0.49 0.37 0.58 0.35 0.56 6.35 9.34 0.35 0.44 0.31 0.54 0.29 0.47 6.83 8.89

Table 5.2: Comparison between our best model and two models from a preceding paper [1].
goal is a CMA with PM and IW and supervised with a greedy goal-oriented sensor, trained
under the same conditions as we did. Essentially an equivalent to the best performing CMA
model from VLN-CE [9]. LAW pano is the same, but supervised with LAW sensor,i.e. our
model without our modifications. Average steps taken metric is skipped, because it was not
reported in the original paper [1].
Our model is under-performing in both cases.

5.3 Discussion of the Results
The results based on our approach hint at the scope of further improvement. The suboptimal
results of our experiments due to the incomplete set of training data. The fluctuating loss values
in Figures 4.1 and 4.4 can be inferred because of the model’s inability to focus properly. As the
loss is calculated based on the average, at each intuition step, the model jumps back and forth:
improving predictions at one intuition step, simultaneously damaging some other intuition step,
then switching to fixing another and ruining something else yet again. A better loss function
would perhaps be a weighted sum, which would give more weight to the predicted actions first
in the intuition sequence. It would return to the action loss being dependent on the decision of
taking action at the current time-step while relegating the remaining action predictions to the
position of auxiliary loss.

Current loss Lossaction = −1
I

∑I
i=0 li

Newly proposed loss, Lossaction = −
∑I

i=0mili where mi > mi1
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6 Future work

We plan to use larger models where the interplay of scaling and power-law of natural language
will give the optimal policy for navigation. The higher-order reasoning while doing the naviga-
tion will be expressed more with a tree-of-thought (ToT) and category theory. We will explore
this tree of thought (ToT) with an architectural bias of graph neural networks and more scaling.
The other direction is exploiting the model’s improvising capacity while choosing the optimal
route during navigation. Improvisations is an emergent phenomenon, while the model has a
global structure (a.k.a knowledge of the environments) and will place the local decisions of
choosing the decisions accordingly. The present neural attention architecture is shallow and the
inference is made based on limited context. We plan to use inductive bias through architectural
innovations (tree) on the self-attention block. The other direction is introduced Song, et al [54],
an alternative method of evoking explicit intuition is to modify the model to also predict visual
observation of the next time-step, as in ”consider what will you see, if taken the action you
are thinking of”. Then as an auxiliary loss calculate the minimum square error between the
predicted and an actual image.
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7 Conclusion

This thesis investigates a non-trivial problem of Visual-and-Language Navigation task by an
robot (Agent). An Embodied Agent (robot) navigates from point A to point B by following
a given a Natural Language instruction and perceiving the surroundings through an RGB-D
camera mounted on top of it. The thesis provides an introduction to the field of autonomous
navigation indoors, later focusing on problem simulations in Continuous Environments. The
machine learning model maps natural language (NL) instructions along with visual inputs for
optimal navigation policy. Natural language through its syntax and semantics provides a high-
level reasoning that is hidden in the latent layers of the model. The look-ahead policy aided by
natural language (along with vision) allows the agent to have exploration-vs-exploitation while
navigating on unknown environment. The thesis gives an idea of the exploration vs exploitation
method through the interplay of shortest-path algorithm and natural language. Natural Lan-
guage because of its inherent ambiguity (and occasionally sloppiness) overrides the standard
decisions and follows unconventional routes.
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Matterport Dataset for any purpose other than accessing the Matterport Dataset, or distribute any such 
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OR THAT THE MATTERPORT DATASET WILL MEET YOUR REQUIREMENTS. Some 
jurisdictions do not allow some of the foregoing exclusions or limitations, so some of these exclusions 
or limitations may not apply to You.   
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respect to any third-party claims arising out or relating to the Matterport Dataset, including without
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will promptly notify You in writing of the claim, cooperate with You in defending or settling the claim
at Your expense, and allow You to control the defense and settlement of the claim, including the
selection of attorneys; provided, however, that You shall not settle any claim unless such settlement
completely and forever releases the Matterport Indemnitee from all liability with respect to such claim
or unless the Matterport Indemnitee consents to such settlement in writing.

6. Limitation of Liability.  TO THE MAXIMUM EXTENT PERMITTED BY LAW:  (a) IN NO EVENT
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MATTERPORT, ITS AFFILIATES OR ITS LICENSORS UNDER THIS AGREEMENT EXCEED
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7. Notice to United States Government End Users. If You are the U.S. Government or if You are a
contractor or subcontractor (at any tier) of the U.S. Government and are licensing the Matterport Dataset
for use by the U.S. Government or in connection with any contract or other transaction with the U.S.
Government, You acknowledge that by installing and using the Matterport Dataset, the Matterport
Dataset qualifies as commercial computer software and that any associated documentation qualifies as
commercial computer software documentation within the meaning of the applicable acquisition
regulations. The terms and conditions of this Agreement are fully applicable to the Government’s use
and disclosure of the Matterport Dataset and associated documentation, and shall supersede any
conflicting terms or conditions.
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