
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Technology
Robotics and Computer Engineering curriculum

Gautier Reynes

VR-Enhanced Remote Inspection
Framework for Semi-Autonomous Robot

Fleet

Master’s Thesis (30 ECTS)

Supervisor(s): Robert Valner, PhD

Ulrich Norbisrath, PhD

Tartu 2023

VR-Enhanced Remote Inspection Framework for Semi-Autonomous
Robot Fleet

Abstract:
This thesis presents the design and development of a Virtual Reality (VR)-enhanced
user interface and communication infrastructure for remote inspection using a semi-
autonomous robot fleet. The core of this project is the creation of a VR interface that
allows operators to immerse themselves in a digital twin of the remote environment,
facilitating intuitive and efficient control over robot inspection. This interface supports
both third-person and robot’s point-of-view perspectives, enhancing situational awareness
and decision-making capabilities in hazardous environments.

The software framework is built upon ROS 2 Foxy, and the VR application was
designed with a new graphics engine called Wonderland Engine, particularly suited for
lightweight WebXR experiences capable of running on a number of VR headsets, like the
Oculus Quest 2. The communication between the interface and the robot fleet is tackled
by a custom-built WebSocket server.

The work is demonstrated using simulated robot scenarios in Gazebo. The demon-
stration serves as a proof of concept, showcasing the viability of the VR interface in a
controlled environment and setting the stage for future real-world applications.

This work contributes to the field of VR-enhanced remote inspection by providing
an interface that bridges the gap between operators and remote environments. The
integration of VR technology with robotic systems opens new possibilities for remote
operation, offering a more immersive and intuitive control mechanism that can be adapted
to various industrial and research applications.

Keywords:
VR, robotics, fleet, interface, HRI, teleoperation, autonomous, inspection, SAR, search
and rescue, disaster, AR, XR, WebXR

CERCS: P170 Computer science, numerical analysis, systems, control; T125 Automa-
tion, robotics, control engineering

2

VR-võimendatud kaugkontrolli raamistik poolautonoomsete robotite
laevastiku jaoks
Lühikokkuvõte:

Käesolev magistritöö kätkeb virutaalreaalsuse (VR) põhise kasutajaliidese ja kom-
munikatsiooni infrastruktuuri väljatöötamist, mille abil saab juhtida poolautonoomset
robotparve ohtlikke keskkondade monitoorimise eesmärgil. Väljatöötatud kasutajaliides
võimaldab operaatoril siseneda monitooritava keskkonna digitaalsesse kaksikusse, hõl-
bustades intuitiivset ja tõhusat kontrolli robotparve üle. Antud kasutajaliides toetab nii
kolmanda isiku kui ka roboti vaatenurka, suurendades operaatori olukorrateadlikkust.

Töö tulemusel valminud tarkvararaamistik põhineb robootika tarkvaraarenduse plat-
vormil ROS 2.VR kasutajaliidese loomisel kasutati graafikamootorit Wonderland Engine,
mis liidestati Oculus Quest 2 VR peakomplektiga läbi veebilehitseja põhiste VR raken-
duste liidestamise teegi WebXR. Graafikamootori ja robotite vaheline suhtlus teostati töö
käigus loodud WebSocket serveri abil.

Tööd demonstreeritakse simuleeritud keskkonnas, kasutades robootikasimulaatorit
Gazebo. Demonstratsioon näidatab väljatöötatud VR-liidese rakendatavust kontrollitud
keskkonnas, mis loob eeldused tulevaste reaalsete rakenduste jaoks.

Võtmesõnad:
VR, robootika, robotipark, kasutajaliides, teleoperatsioon, autonoomne, kontroll, otsingu-
ja päästetööd, katastroof, AR, XR, WebXR

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine; T125 Automatisee-
rimine, robootika, juhtimistehnika

3

Contents
1 Introduction 9

1.1 Problem Statement . 10
1.2 Objectives . 11
1.3 Structure . 11

2 Background and Related Work 12
2.1 State of the Art Robotics in Disaster Management 12

2.1.1 Search and Rescue . 12
2.1.2 Environment Monitoring . 14
2.1.3 Inspection . 14
2.1.4 Human-Machine Interfaces . 14

2.2 VR Teleoperation . 18
2.2.1 Space Robots . 18
2.2.2 Underwater Robots . 20
2.2.3 Construction Robots . 20
2.2.4 Disaster Management Robots 21

2.3 VR outside the gaming domain . 22

3 Requirements 24

4 Architecture 25
4.1 VR graphics API . 28

4.1.1 WebXR . 28
4.1.2 Wonderland Engine . 29

4.2 Robot Setup . 33
4.2.1 ROS 2 . 33
4.2.2 Robot Compatibility . 33

4.3 Communication Infrastructure . 35

5 Interface Design 38
5.1 Menu . 40
5.2 Sensor Screen . 48
5.3 Robot Component . 48
5.4 Teleoperation, Goal Pose, Teleportation and Snap Turn 49
5.5 Screen & Robot Camera Grabber Components 50
5.6 Switching from VR to robot POV . 52

4

6 Demonstration 56
6.1 Hardware setup . 56

6.1.1 Oculus Quest 2 . 56
6.1.2 Lenovo Ideapad 5 Notebook 56

6.2 Software setup . 57
6.2.1 Gazebo simulation . 57

6.3 Demonstration in Simulated Environment 60

7 Discussion 64
7.1 Hand Tracking . 64
7.2 Correcting SLAM generated maps . 66
7.3 Why not Unity? . 66
7.4 Live Video Stream . 68
7.5 Future Work . 68

8 Conclusion 70

Acknowledgments 71

References 72

Appendix 75
Source Code . 75
Running the Interface . 75
GitHub Repository . 76

Licence 77

List of Figures
1 ANYmal robot deployed in challenging hazardous environments, from

[6], cited by [1]. 13
2 Amphibious robot Krock2, which uses a sprawling posture for crawling

locomotion on land, is able to swim in water, and can maneuver through
tight spaces using coordinated limb and spine actuation, from [7], cited
by [1]. 13

3 a) NIFTi UGV in Mirandola, Emilia- Romagna region, Northern Italy
after the 2012 earthquakes [5]; b) Pipe-overheating inspection by an
UGV [2]; c) The Telemax mobile manipulator robot with the on-board
sampling probes in the back [8]; d) Inspection of infrastructure with
multirotor UAVs (Ascending Technologies, 2018), cited by [1]. 15

5

4 NIFTi interface [5]. 16
5 Telemax Operator Control Unit [8]. 16
6 Human–robot interface in which the operator uses pointing gestures, esti-

mated from sensors worn in armbands, to provide navigation commands
to both flying and legged robots, from [9], cited by [1]. 17

7 The real manipulator gripping a solar panel on the left, and the predictive
visualization on the right [10]. 19

8 Creating an environment model from a robotic 2D image survey by
registering to known objects (satellite) and reconstructing unknown or
imprecisely known objects (multi-layer insulation hat) [11]. 19

9 View of the gripper from TWINBOT, the black box model changes color
after the operator puts the gripper in the right position [13]. 20

10 The simulated Brokk demolition robot and an operator teleoperating it
from the VR setup [14]. 21

11 High-level overview of a novel immersive robot teleoperation and scene
exploration system where an operator controls a robot using a live cap-
tured and reconstructed 3D model of the environment [15]. 23

12 CERN mixed reality human-robot interface - operator’s view from an
LHC intervention scenario [16]. 23

13 Hardware overview of the setup . 25
14 Software architecture of the interface 27
15 Lifetime of a web VR app. 29
16 Wonderland Engine’s object hierarchy tree 31
17 Properties tab and component settings of a game object 32
18 List of running nodes for a Turtlebot3 Waffle robot namespaced Waffle1. 34
19 The Turtlebot3 Waffle (Photo: Erico Guizzo/IEEE Spectrum). 34
20 Implemented communication pipeline a) between the robot’s navigation

stack and the interface, b) between the interface’s goal pointer and the
robot’s navigation stack. 37

21 Sample scene in Wonderland Engine 38
22 The interface’s floating menu a) in the Free Roam mode and b) in the

Robot POV mode. 40
23 VRChat’s floating menu. 41
24 Comparison between the Button and Switch components. 42
25 Relation between Switch and Switch Handler with the Emitter component. 43
26 Events following a Robot POV mode button press. 44
27 Events following a Free Roam mode button press. 45
28 Events following a Robot1 switch press. 47
29 The sensor screen showing information for Robot 1 when it is selected

on the menu. 48

6

30 Snapshot command process. 50
31 Camera frame request process. 51
32 Preparing the hemisphere screen for wide-angle images with Blender’s

UV-Map editor. 53
33 Wonderland Engine’s editor with the hemispheric screen and a camera

frame applied as texture. 54
34 Summary of the conversion of camera frames to textures. 55
35 The Quest 2 and its Touch controllers. 57
36 Turtlebot3 Waffle robots performing SLAM (Gazebo on the left, Rviz on

the right) . 58
37 A wide-angle image from the TB3 Waffle’s simulated fish-eye camera. . 59
38 Blender preview of the demonstration scene. 61
39 Close-up of the demonstration’s three tasks: a) inspection of a chemical

storage room, b) inspection of a power distribution room, c) inspection
of a spoiled water exhaust pipe. 61

40 Operator’s point of view in VR for the three tasks: a) inspection of a
chemical storage room, b) inspection of a power distribution room, c)
inspection of a spoiled water exhaust pipe. 62

41 Robot’s point of view for the three tasks: a) inspection of a chemical
storage room, b) inspection of a power distribution room, c) inspection
of a spoiled water exhaust pipe. 63

42 a) Teleportation based on pointing gestures. b) Wrist button concept to
open the menu with hand tracking. 65

43 Meta’s Horizon Worlds wrist "wearable" user menu. 65
44 Comparison between a raw SLAM map and its edited version 66
45 Sample scene in Unity Engine, editor view on top and VR render at the

bottom . 67

7

Nomenclature
2D Two Dimensional

3D Three Dimensional

AMCL Adaptative Monte Carlo Localization

API Application Programming Interface

AR Augmented Reality

CPU Central Processing Unit

DOF Degrees Of Freedom

FPS Frames Per Second

GPU Graphics Processing Unit

HRI Human-Robot Interaction

OS Operating System

PC Personal Computer

POV Point Of View

ROS Robot Operating System

SLAM Simultaneous Localization And Mapping

SVG Scalable Vector Graphics

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

URDF Unified Robotics Description Format

USB Universal Serial Bus

VR Virtual Reality

WLE Wonderland Engine

XR Extended Reality

YAML Yet Another Markup Language

8

1 Introduction
Robotic technologies are commonly deployed in the realm of search and rescue (SAR),
more often in the aftermath of a catastrophe [1]. Disaster management can be broken
down into four steps, one of which is the prevention of future disasters, and the mitigation
of their consequences [1]. Deployment of remotely operated robots, equipped with
sensors and cameras, is a response to the increasing need for preventive measures [2].
Neglected issues in structures and industrial facilities can lead to significant disasters,
often due to overlooked inspections [2]. Certain environments are too dangerous or
remote for human assessment, while others necessitate temporary plant shutdowns for
human inspection, which disrupts regular operations [2]. Miura et al. [2] suggest that the
utilization rate of unmanned inspection solutions should be increased since they allow
examinations to be carried out with plant facilities still in operation. However, Delmerico
et al. [1] argue that if such robotic systems transcend human perception with their sensors,
and exhibit situational awareness beyond what the operators naturally obtain, experts
will prefer semi-autonomous technologies, where the robot is used as a tool supposed
to augment the human-factor rather than eliminating it totally. Full autonomy is said
difficult due to poorer adaptability to complex environment, and on the other hand, full
manual control is too much of a cognitive load for the operators [1]. Opting for either
autonomy or manual teleoperation depending on the situation appears to be a balanced
approach [1].

It is understood that collaborative robot teams - teams where robots and human
operators interact closely - represent the optimal solution for Disaster Management.
However, the success of such teams hinges on the existence of a robust and intuitive
human-machine interface. Experts and professionals of the field agree that the key
criteria for human-machine interfaces are the ease of use, simplicity and affordability
of the systems [1]. The operators should receive minimal training and their cognitive
load should be reduced to the minimum [1]. Off-the-shelf solutions are preferred over
specialized equipment as they offer a greater reliability, and are simpler to use [1]. Also,
the use of natural interactions like pointing gestures could contribute to the accessibility
of human-machine interactions [1]. That being said, a scenario where the operator can
perform proximity interaction in direct line-of-sight with the robot (ex: pointing at a
location for the robot to explore) is hardly imaginable in the aforementioned difficult or
life threatening conditions.

9

1.1 Problem Statement
The characteristics of the environment can render the tasks of multimodal robot teams
hazardous, potentially jeopardizing the mission in certain instances [2]. This risk may
make close interaction impractical, resulting in a diminished experience for the operator
[1].

Virtual Reality is seen as a future trend in the realm of HRI [3]. In that regard, this
thesis proposes a human-robot interface using Virtual Reality which allows operators
to navigate a digital twin of the robot fleet’s environment, where 3D visuals of each
robots can be seen navigating and conducting tasks autonomously, while still having
the option to switch the robots’ perspective individually by accessing their cameras. To
better illustrate the purpose of this work, the following concrete scenario is defined:

In an industrial facility with varied spaces, a fleet of three robots perform individual
inspection tasks:

• The first robot is tasked with the inspection of a chemical storage area.

• The second robot inspects the temperature of electrical panels in a power distribu-
tion room.

• The third robot inspects the plant’s spoiled water exhaust pipe.

In all three cases, the environment is too hazardous for human inspection. Therefore, a
remote operator monitors the robot’s actions from the VR interface, and reacts based on
the robot’s warnings. In all cases the operator takes action as follows:

• The first robot detects high levels of gases with its gas sensor in the chemical
storage area, the operator requests a visual from the robot’s camera and notices a
spill on the floor underneath one of the barrels.

• The second robot inspects the electrical panels with a thermal camera. Visual-
izing the camera footage reveals that none of the panels has reached abnormal
temperatures.

• The third robot detects abnormal humidity levels in the vicinity of the pipes with a
moisture sensor. The operator requests a visual and notices a leak under the pipe.

10

1.2 Objectives
Based on the needs outlined in the problem statement, this thesis establishes the following
goals:

1. Analyze the VR interface designs suited for remote inspection.

2. Design a VR interface for remote inspection that scales to multi-robot systems.

3. Design the underlying implementation to leverage widely adopted robotics frame-
works, such as ROS.

4. Provide a demonstration of the prototype interface with a simulated fleet of robots.

1.3 Structure
This thesis begins by providing a background and reviewing related work to contextualize
its contributions within the current state of the art in robot remote inspection and VR tele-
operation solutions. Following this, it outlines the project’s requirements, drawing from
existing inspection solutions. A dedicated section then details the proposed framework’s
architecture, highlighting key hardware and software components. Another section
delves into the VR interface’s design process. Challenges encountered, critical decisions
made, and practical insights are discussed in a subsequent section which also suggests
future directions for enhancing the framework. The thesis concludes by summarizing the
project’s achievements and results.

11

2 Background and Related Work
This section’s goal is to lay the groundwork for the thesis by reviewing existing robotics
applications in disaster management and remote inspection. Additionally, it examines
prior research on the current state of VR/AR technologies in robotic teleoperation.
Having a clear understanding of the current state of the art is crucial for identifying the
gaps in research and the needs that the solution proposed by this thesis aims to fulfill.

2.1 State of the Art Robotics in Disaster Management
The current state of robotics in disaster management is a dynamic and evolving field,
marked by advancements in various aspects of robot design, control, and human-robot
interaction. The integration of robotics into disaster management operations has the
potential to significantly enhance the efficiency and safety of rescue missions.

Schneider et al. [4] define three areas of applications of robotics in disaster manage-
ment, which are discussed in the next subsections:

1. Search and Rescue

2. Environment monitoring

3. Inspection

2.1.1 Search and Rescue

Search and Rescue missions, in response to disasters, imply navigating in unstructured
and unknown environments, often containing obstacles [1] that cannot be negotiated
by human first responders [4]. Special ground robots (tracked, legged or wheeled)
are deployed to maneuver into those difficult terrains, and perform missions such as
searching for victims in collapsed buildings or putting out fires (Figure 1). Aerial robots,
UAV, are also deployed since they can navigate to unreachable parts of buildings and fly
through narrow gaps with fine precision [1]. UAVs used as flying cameras can be used
to provide a visual of a ground robot to a remote operator [1],[5]. Recent research has
also focused on bio-inspired robot designs, which offer promising applications in SAR
scenarios due to their adaptability to different environments and terrains (Figure 2) [1].

12

Figure 1. ANYmal robot deployed in challenging hazardous environments, from [6],
cited by [1].

Figure 2. Amphibious robot Krock2, which uses a sprawling posture for crawling
locomotion on land, is able to swim in water, and can maneuver through tight spaces
using coordinated limb and spine actuation, from [7], cited by [1].

13

2.1.2 Environment Monitoring

Environment Monitoring relates to the measurement and sensing of parameters within
an environment in the aftermath of a disaster, a task that is often too dangerous to be
performed by humans [4]. The parameters can be chemical, biological or radiological
hazards after incidents [4]. With the example of radiations, which are usually harmful
even to robots, operators can build radiation maps by blending images and data collected
from radiation detection modules [8]. The resulting maps are used in robot navigation
and the updated costmaps, based on radiation levels, allow safe exploration [8]. Robots
like the Telemax mobile manipulator robot (Figure 3c), can sample radioctive and dust
particles from the environment with probes switched by the operator [8].

2.1.3 Inspection

Inspection is similar to Environment Monitoring in the sense that it consists in assessing
precise parameters of an environment, but it is usually a pre-disaster application [4].
If it can be applied to determine the long-term stability of partially wrecked buildings
[4], as demonstrated by the deployment of UGVs and UAVs in Mirandola by the NIFTi
consortium [5] (Figure 3a) , inspection robots are more commonly deployed to inspect
building integrity, radiation levels and chimneys in the nuclear industry, in prevention of
incidents [4]. UAVs are appreciated for inspection of large infrastructure from the air
(Figure 3d), as they can provide detailed 2D or 3D maps of the environments [1]. But
UAVs’ effectiveness falls short when the inspection task is carried out in confined areas
with obstacles such as piping, where UGVs are preferred [2]. Another benefit of using
ground robots is that they can carry manipulators, along with cameras, and interact with
the environment: Miura et al. [2] made a robot capable of reading gauges, observing rust
on pipelines, and the manipulator was designed to operate valves (Figure 3b).

2.1.4 Human-Machine Interfaces

The substantial research in robotic technologies led to the deployment of a myriad of
effective solutions that are in use for disaster management operations, as demonstrated by
the previous sections. Whether it is for monitoring, recovery or inspection, rescue workers
and robot operators have means to accomplish their missions, but the effectiveness of
their work depends on the interactions with the robot agents.

As shown by Figures 4 and 5, most setups rely on traditional graphical user interfaces,
2D screens, with joysticks and buttons as controls. However, [1] presents alternative ap-
proaches to teleoperation and HRI with technologies like the smart glove, used to control
UAVs and UGVs, offering a hands-free gesture-based interface relying on sensorized
armbands. The operators can point somewhere and the robot goes to the pointed location
(Figure 6). The objective of such novel interfaces is to relieve the operator’s cognitive

14

Figure 3. a) NIFTi UGV in Mirandola, Emilia- Romagna region, Northern Italy after the
2012 earthquakes [5]; b) Pipe-overheating inspection by an UGV [2]; c) The Telemax
mobile manipulator robot with the on-board sampling probes in the back [8]; d) Inspec-
tion of infrastructure with multirotor UAVs (Ascending Technologies, 2018), cited by
[1].

15

load, SAR operations being already stressful without the addition of a complex system to
interact with [1]. Delmerico et al. [1] as well as Schneider et al. [4] agree that the future
of SAR robotics lies into the cooperation of human operators and semi-autonomous
robots, by the means of engaging and immersive - almost second nature - interactions.

To go further into providing operators with enhanced situational awareness, immer-
sive telepresence through VR is considered, as the illusion of ‘being in’ the robot could
well provide the operator with much more natural sense of the robot’s position and its
immediate surroundings [4].

Figure 4. NIFTi interface [5].

Figure 5. Telemax Operator Control Unit [8].

16

Figure 6. Human–robot interface in which the operator uses pointing gestures, estimated
from sensors worn in armbands, to provide navigation commands to both flying and
legged robots, from [9], cited by [1].

17

2.2 VR Teleoperation
Recent research in the field of human-robot interaction has given rise to a number of
new interfaces based on VR and AR, for teleoperation and collaboration purposes. The
following subsections showcase some of those interfaces:

2.2.1 Space Robots

Teleoperating space robots from Earth is difficult due to the significant time delays
involved. To solve this, Zainan et al. [10] introduced a VR/AR "predictive display"
(Figure 7) that lets operators control a 3D virtual model of the robot. This model is
superimposed on real-time camera footage from the robot’s location, enabling operators
to plan movements before they are actually performed by the robot. The system uses a
4-DOF robotic arm that follows the movements of its virtual counterpart.

Kazanzides et al. [11] also presented a similar predictive display (Figure 8) but used
Augmented Virtuality (AV). In this setup, operators work within a completely virtual
environment that includes 3D models of the robot and its surroundings, but with the
addition of live video feeds. This approach also helps in overcoming the delay issues.

Both of these systems [10] and [11] effectively deal with the time delay problem.
However, aligning the robot’s real-world movements with its virtual representation
remains a complex task. For example, in [11], the robot is tasked with precisely cutting
a satellite’s thermal insulation layer. Due to the high level of accuracy needed, the
operation is semi-automated: the operator issues high-level commands, but the robot
carries out the precise cutting, relying on force feedback and various sensors for accuracy.

In [10], the experiments concluded with discrepancies between the model and the
real robot’s movements. In [11] the results led to the conclusion that AV significantly
improved the operator’s performance by enhancing their situational awareness, and
allowed them to "precisely specify intended motion". However, the operators seemed to
prefer sacrificing a better visualization - offered by the VR setup - for their conventional
interfaces which they had trained on for years. The VR interface was based on the da
Vinci Research kit, which was also used for remote surgery [12], and although the system
offered a 6-DOF motion control, it was not the best fit for some of the tasks the operators
had to perform. The authors conclude that the operators should be given the choice
between several control interfaces to best carry out the interventions.

18

Figure 7. The real manipulator gripping a solar panel on the left, and the predictive
visualization on the right [10].

Figure 8. Creating an environment model from a robotic 2D image survey by registering
to known objects (satellite) and reconstructing unknown or imprecisely known objects
(multi-layer insulation hat) [11].

19

2.2.2 Underwater Robots

In the context of underwater interventions, the need for which is constantly increasing, re-
mote operated vehicules (ROV) controlled from support vessels are commonly deployed
[13]. De la Cruz et al. [13] propose a VR-based human-robot interface which allows to
control the robots, and provides visual feedback.

The control system is split into two groups, one for managing the vehicle and the
other for managing the manipulator. The operator can switch from either a view of the
vehicle or the robot arm. The particularity of this project is that it focuses on the robotic
system called TWINBOT, composed of two underwater robots designed for underwater
maintenance (oil wells, pipes, observatories etc.). The VR interface is proposed to
eliminate the need of a duplicate control setups to control the TWINBOT, it is designed
to allow the operator to control both robots at the same time.

The interface was developed and tested on consumer-grade hardware and software
like the HTC Vive VR headset, the Unity game engine and several different models of
Graphics Processing Units (GPU).

Iterating their work based on usability tests on ROV pilots in simulated missions,
the authors have managed to produce a subjectively immersive interface with specific
features like a color indicator confirming the correct positioning of the gripper on a target
(Figure 9), supposedly helping the operator, or information about the ROV’s depth etc.
However, lack of realism in the simulation (uncertainty was missing in the simulated
environment) and limited performances were reported to be detrimental to complete
immersion.

Figure 9. View of the gripper from TWINBOT, the black box model changes color after
the operator puts the gripper in the right position [13].

2.2.3 Construction Robots

The use of robotics is emerging in the construction industry, but this creates an urgent
need for the construction workers to reskill and learn how to operate new construction
robotic solutions [14]. Adami et al. [14] investigate the effectiveness of a VR-training

20

platform. With a VR setup composed of an HTC Vive and a VR treadmill, and a virtual
construction site modeled inside the Unity engine, some construction workers were
trained on a virtual replica of a Brokk demolition robot (Figure 10). Other participants
of the study received an in-person training instead. The study’s results revealed that
the workers trained in VR displayed a greater knowledge of the technical and safety
procedures related to the robot’s operation than those who attended the in-person training.
The authors explain that the effectiveness of the VR training resides in the fact that
trainees are less hesitant to perform maneuvers since their mistakes in VR have no real
consequences. The ability to train with a demolition robot without being exposed to the
inherent dangers is the force of such a training tool [14].

Figure 10. The simulated Brokk demolition robot and an operator teleoperating it from
the VR setup [14].

2.2.4 Disaster Management Robots

Stotko et al. [15] address the lack of immersion from standard video-based approaches,
by proposing a novel VR-interface based on RGB-D (RGB Depth) captured data (Figure
11). The data allows the reconstruction of the robot’s surroundings in the VR headset into
3D models. The purpose of this interface is to allow the operator to explore a hazardous,
contaminated or inaccessible place like a disaster or industrial site. The strength of this
system lies in the fact that the operator can explore the reconstructed environment in VR,
independently of the robot’s current position. The robot can be teleoperated to scan the
area and reconstruct it, the operator can visualize the scene from the robot’s perspective,
but the operator can arbitrarily explore another part of the reconstructed environment
from the third person view, and visualize a model of the robot based on the estimated
camera pose.

This system relies on a Kinect RGB-D camera, mounted on a 6-DOF robotic arm,

21

which itself is mounted on a mobile platform. The processing of the RGB-D data and
conversion into the reconstructed 3D environment is tackled by high-end GPUs.

The system was tested by 20 participants and the article concludes by reporting a
clear improvement in terms of situational awareness and teleoperation with more precise
maneuvers and obstacle avoidance.

Similarly, Szczurek et al. [16] propose a Mixed Reality teleoperation interface (Figure
12) which is aimed at reducing the operator’s cognitive load while performing inspection
tasks in hazardous environments. This project was conducted at the European Council
for Nuclear Research (CERN), and was driven by the need for robotic inspections in
environments like the Large Hadron Collider. The interface provides immersive visual
feedback with a reconstitution of the robot’s surroundings based on point cloud data.
The operator can operate the mobile platform’s movements or the manipulator that it
carries. The operator can also define trajectories that the robot follows autonomously, in
an attempt at reducing the cognitive load associated with the task.

The project approached critical challenges associated with interventions in hazardous
environments such as positional precision, collision avoidance and network bandwidth
and delays. The interface also lets the operator toggle between different camera acquisi-
tion techniques (point cloud, 2D camera) and change the streaming settings, to tailor the
immersion and deal with the network’s congestion due to the complexity of point cloud
data transfer.

The paper concludes that the proposed interface does improve the operator’s situa-
tional awareness, and the ability of changing visualization parameters on the fly helps
with optimizing network load.

2.3 VR outside the gaming domain
If gaming paved the way for VR headsets’ democratization, VR technologies’ are
increasingly finding applications beyond entertainment, particularly in the workplace
[17]. The VR market is expected to grow significantly, and sectors like healthcare,
education, and retail are already exploring its potential [17]. VR and AR technologies
can enhance the sense of presence and collaboration in the workplace, suggesting a shift
towards more immersive and productive work environments facilitated by VR [17]. The
future of VR in work is also suggested by the introduction of Apple’s Vision pro, the
giant’s take at Mixed Reality, a technology bridging AR and VR.

22

Figure 11. High-level overview of a novel immersive robot teleoperation and scene explo-
ration system where an operator controls a robot using a live captured and reconstructed
3D model of the environment [15].

Figure 12. CERN mixed reality human-robot interface - operator’s view from an LHC
intervention scenario [16].

23

3 Requirements
The interface proposed by this thesis should satisfy several requirements, in line with
the identified needs and gaps in current robotic solutions, applied to inspection in the
context of disaster prevention:

1. The interface should allow for semi-autonomous robotic operation and direct
teleoperation.

2. The setup should be composed of accessible, off-the-shelf components.

3. The interface should be compatible with most VR headsets.

4. The bridge between the robot’s software and the interface should be robust, yet
straightforward to maintain and scale up.

5. The software used for the development of the interface should support deployment
of prototype iterations.

6. The interface should enhance the operator’s situational awareness, combining
information from the virtual and the real world. And it should involve natural
gestures to maximize accessibility and minimize operator training.

24

4 Architecture
This section first gives a high-level overview of the architecture, then it delves into the
subtleties of its core elements.

As illustrated by Figure 13, the framework relies on three core elements:

1. The operator, equipped with VR gear in a safe environment.

2. The server, host of the VR interface’s data and WebSocket server.

3. The robot fleet, in the remote environment.

Figure 13. Hardware overview of the setup

The operator, equipped with the VR gear is projected in a VR replicate - a "digital
twin" - of the remote environment, rendered within the headset following a request to the
server for the application data (3D models, textures, logic etc). The operator is able to
visualize the robots upon reception of the real robots’ coordinates from the server. The
operator can also arbitrarily switch between semi-autonomous control, by setting goal
positions with VR controllers or hand movements, or full control by directly teleoperating
the robots’ movements with the VR controllers. The virtual environment can also be
enhanced by requesting camera snapshots of the live robots’ surroundings.

25

The server acts as a communication medium between the VR interface and the actual
robot fleet in the remote environment. At the center of the interaction, it hosts an HTML
server providing the VR headset with the necessary data for the operator to enter the
VR world and interact with it (wired or wirelessly), but it also hosts a WebSocket server
which relays robot information (localization, velocities, sensor data etc.).

The real robots in the remote environment perform autonomous navigation based
on a map in which they are localized. They can be programmed to perform routine
tasks, which can be interrupted by the operator to follow new plans, or even resign of
their autonomy and let the operator control them with precision. Each robot establishes
connection with the WebSocket server.

Figure 14 summarizes the software architecture of the project. The VR interface
graphics are rendered within the headset’s native web browser for a standalone headset,
or the computer’s web browser for a PCVR headset. The server provides the VR headset
with graphics via the HTML server hosting a WebXR application. This application also
reads controller input that interact with the interface’s elements. From the interface, the
operator sends high level commands to the robots (goal positions and motor velocities)
via the WebSocket server. The latter, implemented with Node.js, speaks to Node.js
clients for ROS 2 via the RCLNodeJS library. This library subscribes and publishes to
the ROS 2 topics involved in the teleoperation and autonomous navigation of the robot
fleet. The communication through the WebSocket server is bidirectional: RCLNodeJS
clients also send the robot’s transforms and camera frames to the interface.

26

Figure 14. Software architecture of the interface

27

4.1 VR graphics API
The aim of this section is to introduce the WebXR application programming interface
(API) that is used to render the VR content inside the operator’s headset. The section
also gives an insight on the Wonderland Engine (WLE) graphics engine which is tailored
for WebXR.

4.1.1 WebXR

This subsection explains the rationale behind choosing WebXR for developing the VR-
enhanced user interface and how it aligns with the project’s objectives of creating a
universally accessible and scalable VR platform.

WebXR at a glance WebXR is an API that allows to develop and host VR/AR experi-
ences that run on a web browser. The API is capable of detecting the kind of hardware
that is trying to access the content via browser requests, and deliver compatible VR or
AR experiences accordingly [18] (Figure 15 breaks down the lifetime of a VR web app).
It can also register user input from controllers - like the Quest 2 touch controllers - or
hand tracking to interact with the 3D objects displayed in the immersive experience [18].
If some VR platforms like the Oculus Quest 2 are marketed primarily as gaming devices,
offering numerous games on proprietary app stores, WebXR is not merely designed for
game development [18]. As a matter of fact, the API opens up to other uses of AR and
VR such as art, data visualization and video [18].

WebXR’s advantages WebXR is compatible with phones, and VR/AR devices, whether
they are desktop or standalone units. WebXR requires a chromium web browser to work,
which is embedded on most modern smartphones, desktop computers, and VR headsets,
such as the Oculus Quest 2 [19]. It is a future-proof approach to XR development,
VR hardware evolves rapidly as the technology gains traction with the public, but the
experiences should remain compatible since they run on the web browser [19]. The same
version of an experience can be aimed at both VR and AR devices with minimal code
changes to handle the cross-compatibility [19]. Using WebXR, the app build is directly
compatible with any VR device as long as the device’s web browser is supported (a long
list of browsers including Google Chrome is available on WebXR’s documentation),
but with other engines and VR development methods, the builds are made for specific
VR platforms (Oculus, Valve Index, HTC Vive etc.) which means several builds are
required at each app update. The said builds need to be installed on the target devices
for standalone headsets (the headset holds the computational power), or the computer
for PCVR setups (The computer does the graphical computation and the headset is a
display).

28

WebXR development WebXR can be used in many different ways, following the
official documentation, experiences can be programmed from the ground up, but the API
is also supported by game engines, like Unity [19]. The latter is not natively designed
for WebXR, but packages can be imported from a third party package manager [19].
However, WebXR’s official page mentions an alternative graphics engine which seemed
attractive for this project as it natively supports WebXR out of the box: Wonderland
Engine [19].

Figure 15. Lifetime of a web VR app.

4.1.2 Wonderland Engine

The Wonderland Engine was selected for its specific optimization for web-based VR
experiences and its native support for WebXR. This subsection delves into the advantages
of the Wonderland Engine over other VR development platforms.

Wonderland Engine at a glance Wonderland Engine is a highly performant, accessible
and lightweight graphics engine for VR and AR on the web [20]. The engine makes
development accessible and provides an efficient workflow with features such as reloading
the browser to reflect file changes. Its use of WebAssembly (An advanced binary
instruction format designed for efficient execution and compact representation of code
on modern web browsers) and optimizations such as automatic scene batching allow

29

to render many objects’ visuals without compromising performance (The rendered VR
experience does not dip below 60 frames per second even with numerous assets in the
scene) [19]. Just like most game engines, it comes with a 3D visual editor in which 3D
models can be imported. World models generated with Blender for this project were
loaded from the WLE project directory. Various mesh objects can be generated from the
editor, such as cubes, planes, cones etc. The editor comes loaded with pre-configured
materials, which can be customized (colors, reflections etc.) but they are limited and
objects sharing the same material will be applied the same colors. When creating a first
project, templates can be chosen from, and the VR template contains the VR-rig - the
ensemble of game objects required for the VR headset and its controllers to work - out
of the box. WLE internally supports any common VR hardware: most VR controllers
are mapped by default, tracking the controllers from the headset does not require any
extra effort, and hand tracking is even supported natively. WLE relies on JavaScript and
Typescript as scripting languages, the API is well documented on the official website,
breaking down every feature with examples, and if the documentation fails to explain a
specific concept, the community is highly reactive on the official Discord server.

Wonderland Engine’s efficient workflow Wonderland Engine finds one of its strengths
in simplifying deployment after code and scene changes: saving the script from the code
editor after code changes triggers the engine to compile the whole project. The engine
takes full advantage of the wireless Android Debug Bridge (ADB) commands, and if the
application is being previewed in the VR headset when changes are made, the browser
is refreshed to reflect changes. Thanks to this feature of the engine, it was possible to
jump back and forth between the code editor and the head mounted display (HMD) for
efficient debugging and feature testing.

Wonderland Editor was selected as best fit for the development of the interface’s
prototype, for its compliance with the project requirement number 5, but the Discussion
chapter of this thesis contains a comparison between WLE and Unity.

Scripts and Components in Wonderland Engine In WLE, the scripts are denoted as
"components" which can be attached to game objects, whether they are 3D meshes or
symbolic "empty" objects that do not contain any visual representation, but play a role
in the interaction of the user with the rest of the scene. Game objects are hierarchically
related as a tree: each object is a branch of that tree which can contain nested sub-objects
with components of their own (see Figure 16). Components are JavaScript classes, and
can interact with each other by either belonging to the same hierarchy, or by pointing at
each other, by setting the class properties in a way that they call other classes’ methods
and attributes. Those settings are either hard-coded in the scripts, or dynamically adjusted
within the editor as shown in Figure 17.

30

Figure 16. Wonderland Engine’s object hierarchy tree

31

Figure 17. Properties tab and component settings of a game object

32

4.2 Robot Setup
4.2.1 ROS 2

As stipulated in the requirement number 4 of the project, the bridge between the robots
and the interface should be robust and scalable. For this matter the architecture makes
use of the ROS middle-ware which is heavily documented and which benefits from
official and community maintained packages for most commercially available robots.
A plethora of tutorials describe how to implement autonomous navigation for one or
more robots. The interface interacts with ROS 2 Foxy. Although ROS 1 is more mature
and still very much appreciated by the community as a quick-development research tool,
it has reached its end-of-life. Moreover, ROS 2 was introduced as the industrial-grade
successor improving on security, reliability and efficiency [21].

4.2.2 Robot Compatibility

This interface was designed to interact with fleets of ROS 2 robots regardless of the robot
models, as long as they satisfy the following requirements:

• Each robot must be able to navigate (the interface is not compatible with static
manipulators for instance).

• Each robot must support a ROS navigation setup.

• The ROS 2 topics must have namespaces for the messages to be isolated between
each robot.

• The robots must publish their transforms and joints to be localized.

• Each robot must publish camera data on a namespaced camera topic.

• Each robot must have a namespaced velocity control topic to be teleoperated.

• Each robot must publish laser scan data from their LiDAR on a namespaced topic.

The Figure 18 shows the list of specific ROS 2 nodes that should be running for each
robot to work with the interface.

An example of compatible robot is the Turtlebot3 Waffle (Figure 19). This small
mobile robot is commonly used for education and research. It is made for exploration
with a built-in 360° LiDAR, a camera and two robust servomotors. It also has a nice
payload of 30kgf which means it can carry sensors, a small manipulator etc.

33

Figure 18. List of running nodes for a Turtlebot3 Waffle robot namespaced Waffle1.

Figure 19. The Turtlebot3 Waffle (Photo: Erico Guizzo/IEEE Spectrum).

34

4.3 Communication Infrastructure
The VR experience made with WLE and WebXR runs on a web browser, and the
application data is hosted by an HTML server which compiles a set of scripts. There is
no built-in compatibility between the WLE JavaScript API and ROS 2 which means that
a custom-built communication medium had to be implemented. To stay consistent with
the rest of the framework, this medium had to be implemented in JavaScript which is
why the communication between the robot fleet’s middleware, ROS 2, and the interface
is facilitated by a Node.js WebSocket server. It is hosted on the same server as the
HTML server that supplies the VR application data (as illustrated by Figure 14). The
Wonderland Engine VR experience contains the JavaScript clients that interact with the
robots through the WebSocket server issuing requests ans receiving responses under
the form of JSON messages. Having a Node.js server at hands, research on the ROS 2
documentation revealed the existence of the Rclnodejs library.

Rclnodejs is a Node.js client library for ROS 2 [22]. It provides tooling and com-
prehensive JavaScript and Typescript APIs for developing ROS 2 solutions capable of
interoperating with ROS 2 nodes implemented in other languages such as C++ and
Python [22]. The library allowed to create ROS 2 subscribers and publishers for the
various nodes and topics involved in the autonomous navigation and teleoperation of the
robot fleet. The WebSocket server is set up in a way that clients broadcast messages to
the rest of the network, except to themselves. The Figure 20 shows two examples of
the basic communications handled by the server, one way from ROS 2 to the interface’s
clients, the other way from the interface to ROS 2.

Two types of messages transit through the WebSocket server: "Stringified" JSON
messages, usually conveying coordinates or commands, and Binary large objects (Blobs),
used exclusively to convey image data from the robots’ cameras.

Since every client in the network is able to broadcast messages and receive them
from any peer in the network, the server is experiencing clutter of information which
needs to be sorted out. To do so, messages are formatted in a very specific way: all JSON
messages have a mandatory key called ’identifier’, with its value set with a string relevant
to the type of message. For example, the interface runs a client script that requests camera
frames. The camera commands are broadcasted as such:

{'identifier':'camera_trigger',
'command':'camera_capture_ON'}

Similarly, the goal positions are sent this way to the robots, with the mandatory robot
namespace as an identifier prefix:

35

{'identifier':'robot1/goal_pose',
'0':'x_coordinate',
'1':'y_coordinate',
'2':'z_coordinate'}

Rclnodejs subscribes to ROS 2 topics such as /tf and /camera/image_raw, and pub-
lishes to topics like /cmd_vel and /goal_pose. In the case of the robot-pose-subscriber,
raw transforms from the /tf topic are received as serialized ROS 2 messages, then parsed
to JSON, and an extra identifier ’robot_pose’ is added as key following the same
aforementioned principle. Before being sent to the server, the messages as JSON must be
converted to strings using the JSON.stringify() method which is natively supported by
JavaScript. On the receiving end, the messages must be parsed using the JSON.parse()
method. Then, the identifier is extracted and the processing only executes if the expected
identifier is contained in the message. If not, the message is ignored.

If most messages can be conveyed by the WebSocket server as "stringified" JSON,
images from the robots’ cameras are handled differently. The robot-camera-subscriber
client subscribes to the ROS 2 /camera/image_raw topic and retrieves image messages
essentially composed of the image data as an unsigned 8-bit integer array, and information
like the encoding (RGB8), the image dimensions etc. The image data array is large for a
1280x720 pixels image, the computation time to convert several hundreds of thousands
of values alongside image metadata to string, then parse as JSON is high and introduces
a lot of latency between the image request from the interface, the transmission from the
server, and the decoding within the interface. Instead, only the data is kept from the
raw messages, and this data is sent as a Blob to the server. For that reason, each client
expecting messages from the server also verifies the type of message before trying to
parse it to JSON. If the received message is of type "object" or an instance of Blob, but
the desired message is a string, the message is ignored and the next one is processed.
Blobs can also contain identifiers, to separate frames coming from several robots. Strings
can be broken down into chars, and each char can be concatenated as buffer to the rest of
the image buffer. On the receiving end it is just a matter of slicing the received buffer
to isolate the identifier and convert it back to string. But in the context of this version
of the interface, only static images of the robots are displayed, from one robot at a time.
Meaning only one camera stream is subscribed to at once and there is no need to sort
image sources.

36

Figure 20. Implemented communication pipeline a) between the robot’s navigation stack
and the interface, b) between the interface’s goal pointer and the robot’s navigation stack.

37

5 Interface Design
The design of the interface, centered around user experience, underwent two major
iterations, each refined through real-user testing. The version presented in this section
represents the final design, which was developed by incorporating one user’s feedback.

The scene in WLE is based on a 3D model created in Blender. 3D models exported
from Blender as .glb format contain materials and textures which are recognized by
WLE. Figure 21 displays the scene loaded into the editor.

Figure 21. Sample scene in Wonderland Engine

As mentioned in the section 4.1.2 about WLE, the operator interacts with the scene
via components which dictate the behavior of the 3D elements that compose the virtual
environment. This section focuses on the components that play a significant role in the
interface, whether they were shipped by default with the engine, or created specifically
for the interface.

Among the default WLE components, the following are used for the interface:

• Button: this component triggers events when the operator presses a button mesh
on the menu.

38

• Teleportation: this component teleports the user to the location indicated by the
cursor.

• Emitter: this component allows to send messages between WLE components.

The following components were custom-built for the needs of the proposed interface:

• Robot: this component is attached to the robot 3D models, and is responsible for
their movements within the scene.

• Switch: this component is used on the menu to either select a robot to interact
with, or the control mode. This component differs from a button as it behaves as a
toggle switch.

• Button handler: this component triggers events based on which button was
pressed.

• Switch handler: this component triggers events based on which switch was
toggled.

• Robot Camera Grabber: this component sends a trigger to the Screen component
with the robot’s namespace.

• Screen: this component requests a camera frame from the desired robot, and loads
it as model texture which is applied to a screen 3D mesh.

• Menu bring-up: this component displays a menu facing the user when the associ-
ated key is pressed on the VR controllers.

• Goal pose: this component sends a goal pose to the robot at the location indicated
by the cursor.

• Teleoperation: this component allows to manually pilot the selected robot with
the VR controller’s thumbsticks.

• Snap Turn: this component rotates the operator’s view at fixed angles within the
scene from the push of a thumbstick to the sides.

• Sensor Screen: this component displays a small screen below the operator’s left
hand with status about the selected robot’s sensors if any.

All the aforementioned components will be discussed in detail in the following
subsections.

39

5.1 Menu
The menu is by far the trickiest element of this interface since it requires all the com-
ponents to be seamlessly intertwined. For that matter, it is necessary to break it down
completely, from its integration in the editor to each of the button and switch’s actions.

The menu, showed in Figure 22, was designed with a clear inspiration from the
menus found in many VR games. This specific style of menu which is brought up in front
of the user and sort of floats in the air finds its inspiration in VRChat’s menu (Figure 23).
VRChat is a popular VR application with millions of users, thus supporting its use as a
design reference for this work’s VR interface.

Figure 22. The interface’s floating menu a) in the Free Roam mode and b) in the Robot
POV mode.

40

Figure 23. VRChat’s floating menu.

41

The Menu Bring-Up component, which opens the menu when a physical button is
pressed on the VR controller, is attached to a "menu" empty game object, which is the
root of sub-objects for each of the menu’s buttons. The buttons themselves are "empty"
objects, root of button meshes and labels. The Button components are attached to the
button root objects. The same principle applies for switches. The Button and Switch
handlers are attached to the "menu" object as well. The Figure 24 shows the difference
in behavior between Switch and Button components and their respective handlers. Both
components rely on the Emitter, a default WLE component which allows to convey
messages between components. The "emitting" component has an emitter instance
as class attribute, broadcasts messages with the emitter.notify() method while the
"receiving" component has a callback of the emitter instance and receives messages
through the emitter.add() method. The process is illustrated by the Figure 25.

Figure 24. Comparison between the Button and Switch components.

The buttons act as momentary switches which are pressed once and released. In this
interface they are used to select between the two distinct visualization modes:

• Third person view and free exploration around the scene, referred to as Free Roam
mode.

• Inspection of the environment through the robot’s perspective, referred to as Robot
POV mode.

Pressing one mode button or the other activates the associated features, and deac-
tivates those of the opposite mode. For the transition between modes to be clear and
intuitive, the menu labels and behavior are updated dynamically. Upon choosing a mode,
the text displayed on the menu changes to indicate which operations are available or
not for the operator, and some buttons and switches are disabled. For instance, when
entering the Robot POV mode, the user cannot enable robot teleoperation or goal pose.
The switches are disabled, hovering the pointer above them does not generate any haptic
feedback and the label of each mode is displayed with a darker font. Similarly, the
Free Roam button is hidden when the operator is already exploring the scene. Finally,
the "Visualize Robot POV" label which is displayed in the menu from the exploration

42

Figure 25. Relation between Switch and Switch Handler with the Emitter component.

- Free Roam - mode, turns into a "Refresh frame" label when the operator is currently
visualizing the camera frames. The set of events following a button press on the Robot
POV mode are broken down into a flowchart in Figure 26, while those of the Free Roam
mode are illustrated in Figure 27. The Figure 22 displays the menu in the two control
modes with its labels dynamically updated.

43

Figure 26. Events following a Robot POV mode button press.

44

Figure 27. Events following a Free Roam mode button press.

45

After the buttons, the switches play a key role into this interface since they either
select which robot should be focused on, but also the type of control the user should have
on the selected robot. The menu counts five switches for a three-robot setup (Figure 22):

• Robot1 Switch.

• Robot2 Switch.

• Robot3 Switch.

• Teleop Switch, which activate the teleoperation components on both controllers.

• Teleport Switch, which activates the user teleportation on the right controller, and
the goal pose pointer on the left controller.

Unlike buttons, switches stay engaged until another is pressed. While buttons and
switches are equally effective for component interactions, switches offer a clear visual
cue of their state: they change color and maintain it until they are reset, clearly indicating
the active mode and selected robot. If the Robot 1 switch is engaged for instance, toggling
the Robot 2 switch will reset the first automatically. The Switch class has a reset()
method which resets the switch’s appearance and the state of a "toggled" boolean to
False. Figure 28 breaks down the effects of the Robot1 Switch, which are exactly the
same for the two other robots, as well as the Teleop and Teleport switches. Only the
emitted switch ID number changes, this ID ranges from 1 to 5 for a three-robot setup.
Also, all switches are reset when switching between the Free Roam and Robot POV
modes. This ensures the operator does not accidentally use the wrong control mode on
the robots after spending some time visualizing robot camera frames.

46

Figure 28. Events following a Robot1 switch press.

47

5.2 Sensor Screen
The Sensor Screen component displays a small screen below the operator’s left hand.
This screen conveys the current status of the selected robot’s sensors. By pressing a
robot selection switch, the sensor status screen displays the current robot that is selected,
the type of sensor the robot is equipped with, and the value measured by the sensor. A
threshold value can be set in the robot’s parameters and if it is reached, a "WARNING!"
red message is displayed on the screen. This warning message indicates that the operator
should investigate by requesting a snapshot of the robot’s surroundings for instance. The
component receives the switch’s ID from the Switch Handler’s Emitter component. A
method called updateValues() refreshes the screen’s information.

Figure 29. The sensor screen showing information for Robot 1 when it is selected on the
menu.

5.3 Robot Component
Each robot object in the scene has a mesh, which provides a 3D visual representation of
the robot, and a Robot component which updates the robot’s position with respect to the
world at each frame.

48

5.4 Teleoperation, Goal Pose, Teleportation and Snap Turn
The Teleoperation, Goal pose, Teleportation and Snap Turn components are attached to
the left and right "cursors" in the VR-rig hierarchy tree in WLE, to receive the operator’s
input on the VR controllers.

In traditional VR experiences, there are two methods of locomotion for the users:
Teleportation and Smooth locomotion. The first mode allows the user to point some-
where, and their avatar is teleported to the end of the trajectory, usually represented by
a parabola on the screen or a flat marker. This method is often preferred by novice VR
users as it avoids the common feeling of discomfort - motion sickness - triggered by the
second mode. Smooth locomotion is particularly deranging for beginners as the avatar
performs a linear - smooth - motion within the 3D virtual environment, but the user is
not moving in reality. The only remedy for VR-induced motion-sickness is usually to
end the VR session, or practice more regularly to build a tolerance.

Since the accessibility of the interface is a requirement, teleportation was chosen.
The operator of the robot fleet should be able to work extensive sessions without having
to rest from motion sickness. Also, the Snap Turn component allows the operator to
rotate their point of view by fixed angle increments in the VR scene, without having to
physically turn their head around. This is performed by pushing the right controller’s
thumbstick to the left or right. Snap Turn is a very common comfort feature in VR
applications, especially for those who use VR while seated.

The Goal Pose component is actually a modified version of the Teleportation com-
ponent. It works the same way as the Teleportation component, to the difference that it
does not teleport the user to the pointed location, but rather the coordinates are sent to
the selected robot.

The Teleoperation component takes the same logic as the two previous components
when it comes to user input, the thumbsticks’ orientation is monitored: pushing the
thumbstick forward and backwards moves the robot linearly, and pushing the thumbstick
to the sides rotates the robot. Both the left and right thumbsticks produce the same output
to ensure accessibility for left and right-handed operators.

All these components make use of the thumbsticks, to improve the user experience
a dead-zone was introduced. It is a threshold past which thumbstick movements are
registered. Without this dead-zone the operator would likely execute a "snap turn"
command when pointing at a teleportation target. As a matter of fact, in practice it is
difficult to push the thumbstick forward perfectly centered. The threshold filters any
unwanted rotation. This is also very useful to make the robot’s motion smoother when
teleoperating.

49

5.5 Screen & Robot Camera Grabber Components
The Screen and Robot Camera Grabber components are attached to the display object
which contains a screen mesh in the shape of an hemisphere to display wide-angle images.
The Robot Camera Grabber is activated when the operator enters the Robot perspective
mode, it waits for a robot to be selected. Once the switch is toggled the component sets
the robot’s namespace from the switch’s ID, and sends a "snapshot" command via the
Emitter to the Screen component (see Figure 30). The camera frame request is issued by
the Screen component as shown in Figure 31.

Figure 30. Snapshot command process.

50

Figure 31. Camera frame request process.

51

5.6 Switching from VR to robot POV
After the menu, displaying camera frames into the interface was a great challenge.
The point of this mode is to provide the operator with a visual of the robot’s actual
surroundings. Although the VR environment is a 1:1 replica of the remote one, in
practice the robot could face an obstacle not shown in VR, or the operator might simply
want to see through the "eyes" of the robot to better assess the situation. Instead of
streaming a live feed of the robot’s camera, this mode takes a single snapshot from the
robot currently selected in the menu.

Displaying the images in VR Receiving images from the robots was challenging
but having an already solid basis with the server’s architecture, it was not the most
troublesome aspect of this feature. The real struggle was actually displaying the image
within the VR experience. To display an image in WLE, it needs to be applied to a
material as a texture, and the material is attached to a mesh object. As suggested in the
section about the engine, some materials are installed by default and can be modified
from the editor (color, shadows, reflections, shader...), but they are usually common to
several meshes in the scene, so changes apply to all the objects. The engine is designed
to optimize the application build so it runs smoothly from the browser. Instead of storing
multiple separate textures in the application files, it appends all the textures to a same
atlas at startup. The issue with that approach is that every time a camera frame is received
and applied as a texture, a back-process appends the newly received texture to the atlas.
If the texture is refreshed at a high frequency, the entire VR experience jitters. This is
why the interface only displays a single frame per request and not a live camera feed.
Displaying several frames consecutively interrupts any kind of interaction from the user,
like button presses to open the menu, and eventually the texture atlas cannot keep up and
throws an error.

The screen used to display the camera frames in the VR interface is hemispherical.
It was made with Blender from a hollow sphere cut in half. The surface was flipped in
the model editing software because the texture must be applied inside the hemisphere
and not outside. This "curved screen" shape was chosen to provide a more immersive
visualization of the robot’s POV with wide-angle images. As a matter of fact, flat images
displayed on a flat screen in VR are not immersive: their field of view is limited and some
of the robot’s surroundings are not visible. Also, flat images do not convey any sense
of depth. Depth is crucial for the operator’s situational awareness [23], and as much
information as possible should be visible on a single frame, without having to move the
robot or rotate its camera. The solution is to use full-field panospheric images which
can be captured with wide-angle and 360 degrees cameras, then displayed in VR with
spherical or hemispherical displays [23]. The Figure 32 shows the process of applying
a texture to the screen hemisphere using Blender’s UV-Map editor. The image in this

52

preview comes from a simulated wide-angle camera (Figure 37). It allowed to accurately
place the texture on the UV-Map. The orange element on the UV-map editor shows how
the texture is wrapped on the geometry, presently an inside-out hemisphere. Once the
3D model is exported from Blender as .glb extension, the model is attached a custom
material to which textures can be applied from WLE, and the textures are automatically
displayed correctly, as shown in Figure 33. However, this was by setting the texture from
the editor, applying it in the interface at runtime is a complex process.

Figure 32. Preparing the hemisphere screen for wide-angle images with Blender’s UV-
Map editor.

Converting the camera frame to texture The way the Screen component issues
camera frame requests was covered earlier, illustrated by Figure 31. However, the
component is more complex than that, since it hosts the code responsible for the texture
update. Once the component is active, it connects to the WebSocket server and emits
camera frame requests.

The received message, a Blob, contains an RGB8 Uint8Array of size 2764800 (The
camera is set to output at a resolution of 1280x720 pixels. The encoding of the images is
RGB8, each color channel is encoded with a byte, there are three color channels in RGB,
which makes 3 bytes per pixel. The step - representing the number of bytes per row - is
3840. 3840/3 = 1280 pixels; 2764800/3840 = 720 pixels.).

The WLE API for textures suggests to use "canvas" which are elements used to draw
graphics on HTML pages using JavaScript, usually, images from web sources can be

53

Figure 33. Wonderland Engine’s editor with the hemispheric screen and a camera frame
applied as texture.

applied with their URL to a canvas, and within a 2D context on the web page, the canvas
is displayed, containing the image. In the case of the interface, the image is received as
an array which needs to be converted to the ImageData format before it can be applied
to the canvas. Then, once the canvas is built, the WLE API comes into play: a texture
object of the Texture class is initiated, attached to the Screen component’s material, itself
attached to the Screen component’s mesh, presently the hemispheric screen. The texture
object gets its texture attribute updated with the current canvas. The update() method
for Texture classes appends the texture on the atlas slot. This complicated process is
summarized in Figure 34.

54

Figure 34. Summary of the conversion of camera frames to textures.

55

6 Demonstration
The demonstration serves as a proof of concept, showcasing the viability of the interface
and its features in a simulated scenario introduced in the section 1.1 Problem Statement.
For this demonstration, the user plays the role of an operator tasked with the supervision
of three inspection robots, in a simulated industrial facility with varied environments.

This section introduces the hardware and software elements involved in the demon-
stration, as well as the simulated environment and visuals from the operator’s point of
view.

6.1 Hardware setup
6.1.1 Oculus Quest 2

The headset at a glance. The Oculus Quest 2 [24] (Figure 35), is a 6-DOF Virtual
Reality headset capable of performing room-scaling and hand tracking. By default, it
is controlled with a pair of Touch controllers tracked by the headset’s array of infra-red
cameras, and those controllers can provide some haptic feedback to the user for more
immersion. The headset operates independently, hosting games on an Android-based OS
with its Qualcomm Snapdragon XR2 processor, or it can stream content from a VR-ready
computer where the PC handles all the graphics processing with its high-end CPU and
GPU. The Quest 2 is a reference in the realm of VR devices, breaking sales records to
this day.

Setting up the headset. In order to install applications on the Quest 2 other than the
official applications (from the Oculus Store), the headset needs to be set up for Android
Debug Bridge (ADB), a development tool for Android debugging and sending commands
to devices running the OS. Those commands also work wirelessly, one convenient way
of activating wireless ADB support is by installing the SideQuest software on the host
PC [25], after enabling the developer mode in the headset [26] which by itself enables
ADB commands via USB.

6.1.2 Lenovo Ideapad 5 Notebook

The computer used throughout this project as a server is a simple Lenovo Ideapad 5
notebook, powered by an 11th generation Intel i7 processor, with 16GB of DDR4 RAM,
1TB of M.2 SSD storage, and Intel Iris XE. integrated graphics. The laptop has Ubuntu
20.04 installed as a dual-boot OS.

This computer was powerful enough to generate the 3D models for this project,
and can manage to run the Gazebo simulation alongside the WebSocket server and the

56

Figure 35. The Quest 2 and its Touch controllers.

HTML server for the WebXR app. However, it is not "VR-ready" which means that it is
not usable in a PCVR configuration. The aforementioned Oculus Quest 2 was used as
standalone for the demonstration.

6.2 Software setup
6.2.1 Gazebo simulation

Although this project is carried out with hardware robots in mind, this demonstration
involves a simulated robot fleet in a simulated environment in Gazebo 11, part of the
ROS 2 robot middleware.

Mapping the environment Mapping the simulated environment is necessary to allow
autonomous navigation for the simulated robot fleet. As it is a very common method in
robotics, and this thesis is not aimed at evaluating navigation solutions but rather focus
on the human-robot interface, off-the-shelf SLAM was used to generate a map with a
single robot and its LiDAR. The documentation on the Turtlebot3 website contains a
comprehensive tutorial about SLAM with simulated robots. By driving the robot at a
slow speed around the simulated room, the Slam-Tools package nodes built a 2D map
from the robot’s LiDAR hitting the walls, which was saved and reused for autonomous
navigation. Again, the robot’s documentation came in handy since a full tutorial explains
how to start the set of nodes necessary for navigation with the generated map. SLAM
allows the robot to localize itself in the environment by identifying landmarks in the
scene with its LiDAR, but if an unknown obstacle is sensed (a piece of furniture is added
after the map was generated, or a person stands in front of the robot) the robot’s path
planner can adjust the trajectory to avoid it. At all times the robot’s estimated position

57

and orientation within the map are published to ROS 2 topics thanks to the odometry.
Figure 36 shows Gazebo and Rviz side by side as the map is loaded and SLAM is running.
Rviz displays the robots, the map and the costmap. The latter shows the area where the
robot can navigate freely and the walls and obstacles, with a buffer region around them
(purple and blue), that the robot should keep away from.

Figure 36. Turtlebot3 Waffle robots performing SLAM (Gazebo on the left, Rviz on the
right)

Multi-Robot setup Once the SLAM navigation worked for a single robot, it was
extended to support a fleet of several Turtlebot3 robots. Precisely, the simulation was
constituted of three instances of the Waffle robot. Each of the simulated robots is loaded
from a URDF file which corresponds to the characteristics of the real physical robot,
and the set of nodes and topics generated by Gazebo are the same ones that would be
involved in a physical Waffle robot fleet (Figure 18).

In the context of this thesis, the multiple-robot SLAM navigation was performed
using the Nav2 navigation stack and the AMCL localization algorithm. Each robot is
identical but has a namespace, which means each robot has the same set of ROS 2 topics
and nodes which convey a plethora of information such as transforms, joints, camera
frames, etc. If the default odometry topic for a single robot is /odom in the case of a
multiple robot setup, the first robot’s odometry would then be /waffle1/odom. The three
robots are localized on the same map and can navigate autonomously to goal coordinates,
while performing obstacle avoidance.

58

Simulated Cameras The real Waffle robot natively carries a camera, and so does
its simulated counterpart. This camera is necessary to convey images of the robot’s
surrounding within the interface. However, the default simulated camera produces
standard flat images as opposed to the wide-angle panospheric images that the interface
expects.

It is possible to change the simulated robot’s camera from its model properties. In
the turtlebot3_gazebo ROS 2 package, a folder named /models contains all Turtlebot3
models from the Burger to the WafflePi. Inside the Waffle’s folder the "model.sdf" file
contains all the links and joints of the robot, with associated meshes for 3D representation,
and ROS plugins for topics (odometry, camera...). Gazebo provides a tutorial to change
the camera properties within the model configuration file. Both "fish-eye" and 360
cameras can be set up, however, simulated 360 images look quite bad. Wide-angle
images are quite decent on the other hand, as shown in Figure 37.

Figure 37. A wide-angle image from the TB3 Waffle’s simulated fish-eye camera.

59

6.3 Demonstration in Simulated Environment
To test the interface, a simulated environment was modeled in line with the scenario
introduced in 1.1. The scene was made in Blender like most of the 3D assets of the
interface, using free 3D assets from the internet. The Figure 38 shows a preview of the
demonstration scene in Blender. The demonstration scene contains the three inspection
tasks from the scenario:

The first room - the chemical storage area - (Figure 39a) contains barrels filled with
chemicals. One of them is leaking and a spill is visible on the floor. When approaching
the spill, the first robot sends warning signals to the operator on the sensor status screen.
The operator can request a visual of the robot’s camera and the spill is visible on the
picture. The operator’s POV in VR is illustrated by Figure 40a and the robot’s POV is
shown in Figure 41a.

The second room - power distribution unit - (Figure 39b) contains three high-voltage
electrical panels. The operator accesses the robot’s thermal camera feed and does not
detect any abnormal temperature looking at the panels. The temperature on the sensor
status screen is also normal. The operator’s POV in VR is illustrated by Figure 40b and
the robot’s POV is shown in Figure 41b.

The third and final room - the plant’s plumbing room - (Figure 39c) contains a leaking
spoiled water exhaust pipe. The third robot detects high humidity levels and a visual of
the surroundings reveals a puddle underneath the pipe. The sensor status screen reports
high humidity levels. The operator’s POV in VR is illustrated by Figure 40c and the
robot’s POV is shown in Figure 41c.

For each task, the operator sends a goal position for each robot in the respective
rooms they have to inspect, and observes warning signals in case of hazard.

The source code for reproducing this demonstration is available on GitHub1.

1https://github.com/Gautier30/ROS2_VR_Interface

60

https://github.com/Gautier30/ROS2_VR_Interface

Figure 38. Blender preview of the demonstration scene.

Figure 39. Close-up of the demonstration’s three tasks: a) inspection of a chemical
storage room, b) inspection of a power distribution room, c) inspection of a spoiled water
exhaust pipe.

61

Figure 40. Operator’s point of view in VR for the three tasks: a) inspection of a chemical
storage room, b) inspection of a power distribution room, c) inspection of a spoiled water
exhaust pipe.

62

Figure 41. Robot’s point of view for the three tasks: a) inspection of a chemical storage
room, b) inspection of a power distribution room, c) inspection of a spoiled water exhaust
pipe.

63

7 Discussion
The goal of this section is to go over the challenges encountered during this project, as
well as covering the future work. The point is to provide the reader with an insight on
what was attempted but did not work for the interface, and share tips and tricks that came
in handy during the design process.

7.1 Hand Tracking
Although the project requirements include natural gestures for the operator interaction
(Requirement 1), the current state of the demonstrated VR interface makes use of the VR
controllers to issue goals for the robots and to teleoperate them. The Oculus Quest 2 is
compatible with hand tracking, and this feature is natively supported by WebXR and by
extension Wonderland Engine. Some experiments with the engine’s hand tracking were
conducted in a separate VR scene:

Project templates show various hand displays, with either a skin or the individual
joints, and the hand tracking default scripts are quite straightforward to understand
and alter. A simple "index pointing" detector method was added to the default hand
tracking script, to track operator’s pointing gestures. The method simply computes the
distance between the middle finger and index finger tips, and if the distance is greater
than a set threshold, then the hand is registered as pointing. The method is called by the
teleportation script so that the operator can teleport across the VR scene not by pushing a
thumbstick this time, but instead by pointing into a direction, as illustrated by Figure 42a.
This could be implemented for the goal position script too.

Taking the inspiration from Meta’s Horizon World social application menu (Figure
43) , a wrist button concept was also implemented to bring the menu up. The operator
would have to rotate their wrist to reveal the button, and press it with the other hand’s
index finger, as illustrated by Figure 42b. When the wrist is a normal position the
button is not visible. Meta’s approach is to display the button when staring at the wrist
regardless of its rotation. This wrist method is becoming a popular approach among
recently released VR titles.

Although hand tracking is well integrated into the API, and the aforementioned
examples look promising when it comes to delivering a gesture-based control. The
transition between the hand tracking and the controllers was found to be quite unreliable.
The operator should still be able to teleoperate the robots, with a degree of precision that
thumbsticks satisfy, but in practice jumping back and forth between gesture control and
thumbstick control broke the interface’s menu and interaction.

64

Figure 42. a) Teleportation based on pointing gestures. b) Wrist button concept to open
the menu with hand tracking.

Figure 43. Meta’s Horizon Worlds wrist "wearable" user menu.

65

7.2 Correcting SLAM generated maps
One nice trick that was useful when mapping a more intricate building: if the robot is
driven too fast or takes sharp turns during mapping, the walls can be deformed in a way
that two parallel walls will turn out crooked. But the output of the cartographer being an
SVG image and a YAML configuration file, the image can be edited in any photo editing
software, like Gimp, and the walls can be redrawn by hand, or artifacts can be erased.
The map displayed in Figure 36 was actually crooked and fixed by hand. A before/after
comparison is showed in Figure 44.

Figure 44. Comparison between a raw SLAM map and its edited version

7.3 Why not Unity?
Unity was the first game engine considered for this thesis as it is commonly used for
robotic simulations, and also because one of this project’s requirements is to leverage
"off-the-shelf" solutions to ensure accessibility of this work. However, the integration of
Unity with ROS 2 presented unique challenges, as discussed in this subsection, ultimately
leading to the exploration of alternative solutions.

Unity at a glance Unity is a cross-platform game engine developed by Unity Tech-
nologies, it is used to make both 3D and 2D experiences for a plethora of devices such as

66

desktop computers, smartphones, consoles and it can also make VR applications for the
Hololens 2 (Microsoft), PSVR (Sony Playstation), Quest (Meta, formerly Oculus)... The
engine is written in C++, but the scripts are written in C# [27].

ROS 2 with Unity Unity is not natively compatible with ROS 2, but there exist a
library that allows to integrate scripts such as Publishers and Subscribers to interact with
ROS 2 topics: the library is called "ros2-for-unity". The official repository states that the
compatible ROS 2 distributions are Galactic and Humble [28], however, the experiments
conducted for this thesis proved that the basic features of the library worked with Foxy
as well.

Unity for the VR interface As expected, it was quite straightforward to build a test
world made of four walls, a mock-up robot model, and a cube for orientation reference,
as shown in Figure 45.

Figure 45. Sample scene in Unity Engine, editor view on top and VR render at the bottom

Unity being so popular, many tutorials can be found on the web, specifically the
tutorial by the UnityRos2Tech channel on how to setup the ROS 2 library with Unity
[29]. With a default ROS 2 library script to subscribe to the /tf topic, and a few
changes to apply the transformations to the 3D model representing the robot, it was very
straightforward to get the model to move according to a single simulated robot. That was
for the preview render in the editor. However, the same should work from the VR headset.
Again, relying on YouTube tutorials, it was fairly easy to build the VR application for
Android and install it to the headset. Unfortunately, the application did not track the

67

simulated robot’s movements. It comes down to a limitation of the "ros2-for-unity"
library: the 3D simulation, or game, needs to run on the same machine which hosts the
ROS 2 nodes and topics. The Quest is connected on the same local network but does
not access the robot’s information. For that reason, further development with Unity was
interrupted. A PCVR setup is required for the Unity experience to work, however, such a
complex setup is not in line with the requirement of the setup to be accessible.

Lastly, having to build the application after every code change, and having to install
the APK all over again in the headset, was a very slow process. This aspect was
incompatible with the project’s last requirement being to favor development software
capable of quickly deploying prototype iterations.

7.4 Live Video Stream
A prototype of video stream was implemented on the laptop’s browser with a custom
HTML file and some scripts, leveraging HTML canvas, and it gave quite satisfying
results, but the same principle could not be replicated in WLE because of the way the
API handles textures.

7.5 Future Work
The short time to complete this work led to some aspects needing to be explored. Several
elements could be further investigated to improve upon the solution that this thesis
delivers:

First, a proper user evaluation should be performed to provide a more comprehensive
review of the interface’s usability. The feedback of a single test-user allowed to refine
the interface’s user experience through several iterations, but a broader assessment is
necessary to draw meaningful conclusions regarding accessibility and the enhancement
of the operator’s situational awareness. Those two criteria were listed as requirements of
the interface.

Hand tracking is one of the accessibility features drafted but left unfinished, although
it could significantly improve the user experience. Unfortunately, the current transition
between controller and hand tracking that is proposed by the Oculus Quest 2 and the
Wonderland Engine API is too unreliable and requires too much effort from the operator.
This issue should be patched by the maintainers of the hardware and the API, or further
focus on the interface’s scripts could allow to smoothen the transition.

About the virtual environment, the one used for the demo was generated beforehand
with a 3D model editing software (Blender). Still, the principle presented by [15], where
the robot dynamically generates the 3D environment as it explores, could be integrated
with this thesis’ interface.

68

Also, the visualization of the robots’ real environment is currently restricted to still
images, which limits the possibilities in terms of teleoperation. An investigation is needed
to determine if the Wonderland Engine is at capacity or if new updates and changes in
the API could allow a real-time video stream.

The demonstration scenario presented in this thesis involves a homogeneous fleet
of three Turtlebot3 Waffle robots, but the current features of the interface should be
compatible with any robot. It would be interesting to test the interface with a mobile
platform, loaded with a manipulator to close the valve in the third task of the demon-
stration inspection. This would use the teleoperation capability intensively, and one of
the joysticks could be remapped to control the manipulator’s end effector instead of the
platform’s movements.

Finally, the interface’s current state provides situational awareness through visual
and haptic feedback, however, sounds could be another effective source of immersion
according to Bremner et al. [30] and their research on the impact of data sonification in
VR robot teleoperation.

69

8 Conclusion
This thesis presented the development of Virtual Reality based user interface for remote
inspection in hazardous environments via a multi-robot fleet. The research focused on
enhancing teleoperation and monitoring of a semi-autonomous robot fleet through an
immersive VR interface. The latter aims to improve operator efficiency and situational
awareness. Key achievements include successfully developing a VR interface that
allows direct and intuitive interaction with the fleet, and implementing a custom-built
WebSocket server that enables communication between the ROS 2 robot middleware and
the interface. The interface was made with Wonderland Engine, a new contender on the
game engine market, which proved to be a significant development tool for deploying
each iteration to the VR headset.

Despite various challenges, such as the complexity of integrating ROS 2 with an
unsupported game engine, or ensuring real-time responsiveness when overlaying the
virtual environment with pictures of the robot’s cameras, the thesis provided a practical
solution, demonstrating the feasibility and effectiveness of the proposed framework. The
research findings contribute to the fields of robotic and VR, showcasing the potential of
VR technologies in transforming the way we interact and control robotic systems.

The demonstration that accompanies this thesis serves as a proof of concept as to the
viability of such a solution, however, the user experience could benefit from the future
work described in the Discussion section.

70

Acknowledgments
I would like to express my gratitude to my supervisors, Robert Valner and Ulrich
Norbisrath, for their guidance throughout this project. As my first academic endeavor,
their regular and insightful feedback was crucial in shaping and efficiently organizing
my work with the very little time I was given. Leveraging Robert Valner’s expertise in
Robotics and Ulrich Norbisrath’s experience in computer graphics and Virtual Reality, I
was able to undertake this exciting project and contribute to the field of robotic inspection.

Thanks to the Wonderland Engine Discord community for their tremendous help
early on in the project when I was still learning how to use JavaScript. Their reactive and
clear advice made the learning curve much more gentle than it looked at first glance.

I also wish to extend my appreciation to the the OpenAI team for Chat GPT 4 which
I used throughout the project to optimize my time designing the framework and putting
it into words. The large language model helped me by suggesting synonyms and style
corrections to improve readability. It also provided boilerplate code for me to use as a
basis for deeper feature development (ex: basic WebSocket client code in JavaScript).
GPT was used also as an idea generator, prompted with some of my general, unstructured,
ideas and criteria for the demonstration. Finally the AI helped me expand the literature
collection which was used in the background work section of the thesis, thanks to the
Bing search feature.

Finally, I would like to thank my family and friends for their trust and support since
the beginning of my Engineering studies. More than my future profession, engineering
is my passion but this field rhymes with challenges, stress and doubts, which my caring
surroundings made more bearable.

71

References
[1] Jeffrey Delmerico et al. “The current state and future outlook of rescue robotics”.

In: Journal of Field Robotics 36 (7 Oct. 2019), pp. 1171–1191. ISSN: 15564967.
DOI: 10.1002/rob.21887.

[2] H. Miura et al. “Plant inspection by using a ground vehicle and an aerial robot:
lessons learned from plant disaster prevention challenge in world robot summit
2018”. In: Advanced Robotics 34 (2 Jan. 2020), pp. 104–118. ISSN: 15685535.
DOI: 10.1080/01691864.2019.1690575.

[3] V. Michal. “Remote operation and robotics technologies in nuclear decommission-
ing projects”. In: Elsevier, 2012, pp. 346–374. DOI: 10.1533/9780857095336.2.
346.

[4] Frank E Schneider and Dennis Wildermuth. Assessing the Search and Rescue
Domain as an Applied and Realistic Benchmark for Robotic Systems.

[5] G. J.M. Kruijff et al. “Designing, developing, and deploying systems to support
human-robot teams in disaster response”. In: Advanced Robotics 28 (23 Dec.
2014), pp. 1547–1570. ISSN: 15685535. DOI: 10.1080/01691864.2014.985335.

[6] M. Hutter et al. “ANYmal - toward legged robots for harsh environments”. In:
Advanced Robotics 31 (17 Sept. 2017), pp. 918–931. ISSN: 15685535. DOI: 10.
1080/01691864.2017.1378591.

[7] Tomislav Horvat et al. “Inverse kinematics and reflex based controller for body-
limb coordination of a salamander-like robot walking on uneven terrain”. In: Sept.
2015. DOI: 10.1109/IROS.2015.7353374.

[8] Manolis Chiou et al. “Robot-Assisted Nuclear Disaster Response: Report and
Insights from a Field Exercise”. In: (July 2022). URL: http://arxiv.org/abs/
2207.00648.

[9] Boris Gromov, Luca Maria Gambardella, and Alessandro Giusti. “Video: Landing
a Drone with Pointing Gestures”. In: Mar. 2018, pp. 374–374. DOI: 10.1145/
3173386.3177530.

[10] Jiang Zainan et al. “Virtual Reality-based Teleoperation with Robustness Against
Modeling Errors”. In: Chinese Journal of Aeronautics 22 (3 June 2009), pp. 325–
333. ISSN: 1000-9361. DOI: 10.1016/S1000-9361(08)60106-5.

[11] Peter Kazanzides et al. “Teleoperation and Visualization Interfaces for Remote
Intervention in Space”. In: Frontiers in Robotics and AI 8 (Dec. 2021). ISSN:
22969144. DOI: 10.3389/frobt.2021.747917.

[12] F. Pugin, P. Bucher, and P. Morel. “History of robotic surgery : From AESOP®
and ZEUS® to da Vinci®”. In: Journal of Visceral Surgery 148 (5 Oct. 2011),
e3–e8. ISSN: 1878-7886. DOI: 10.1016/J.JVISCSURG.2011.04.007.

72

https://doi.org/10.1002/rob.21887
https://doi.org/10.1080/01691864.2019.1690575
https://doi.org/10.1533/9780857095336.2.346
https://doi.org/10.1533/9780857095336.2.346
https://doi.org/10.1080/01691864.2014.985335
https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1080/01691864.2017.1378591
https://doi.org/10.1109/IROS.2015.7353374
http://arxiv.org/abs/2207.00648
http://arxiv.org/abs/2207.00648
https://doi.org/10.1145/3173386.3177530
https://doi.org/10.1145/3173386.3177530
https://doi.org/10.1016/S1000-9361(08)60106-5
https://doi.org/10.3389/frobt.2021.747917
https://doi.org/10.1016/J.JVISCSURG.2011.04.007

[13] Marcos de la Cruz et al. “Preliminary work on a virtual reality interface for the
guidance of underwater robots”. In: Robotics 9 (4 Dec. 2020), pp. 1–24. ISSN:
22186581. DOI: 10.3390/robotics9040081.

[14] Pooya Adami et al. “Effectiveness of VR-based training on improving construction
workers’ knowledge, skills, and safety behavior in robotic teleoperation”. In:
Advanced Engineering Informatics 50 (Oct. 2021). ISSN: 14740346. DOI: 10.
1016/j.aei.2021.101431.

[15] Patrick Stotko et al. “A VR System for Immersive Teleoperation and Live Ex-
ploration with a Mobile Robot”. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2019, pp. 3630–3637. DOI: 10.1109/
IROS40897.2019.8968598.

[16] Krzysztof Adam Szczurek et al. “Mixed Reality Human-Robot Interface with
Adaptive Communications Congestion Control for the Teleoperation of Mobile
Redundant Manipulators in Hazardous Environments”. In: IEEE Access (2022).
ISSN: 21693536. DOI: 10.1109/ACCESS.2022.3198984.

[17] Meta. The future of VR - top trends for 2023. https://www.workplace.com/
blog/the-future-of-vr.

[18] WebXR explainer. https : / / github . com / immersive - web / webxr / blob /
master/explainer.md.

[19] WebXR showcase. https://immersiveweb.dev/.

[20] Wonderland Engine. hhttps://wonderlandengine.com/about/what- is-
wle/.

[21] John Houston. ROS 2: The Transition from Research to Production. https://
www.freshconsulting.com/insights/blog/ros-2-the-transition-from-
research-to-production/.

[22] RCLNodeJS, ROS2 Javascript client library. https://github.com/RobotWebTools/
rclnodejs.

[23] Veiko Vunder et al. “Improved Situational Awareness in ROS Using Panospheric
Vision and Virtual Reality”. In: 2018 11th International Conference on Human
System Interaction (HSI). July 2018, pp. 471–477. DOI: 10.1109/HSI.2018.
8431062.

[24] Wikipedia Contributors. Oculus Quest 2. https://en.wikipedia.org/wiki/
Quest_2.

[25] Adafruit. Install and Use Sidequest. https://learn.adafruit.com/sideloading-
on-oculus-quest/install-and-use-sidequest.

[26] Adafruit. Enable developer mode. https://learn.adafruit.com/sideloading-
on-oculus-quest/enable-developer-mode.

73

https://doi.org/10.3390/robotics9040081
https://doi.org/10.1016/j.aei.2021.101431
https://doi.org/10.1016/j.aei.2021.101431
https://doi.org/10.1109/IROS40897.2019.8968598
https://doi.org/10.1109/IROS40897.2019.8968598
https://doi.org/10.1109/ACCESS.2022.3198984
https://www.workplace.com/blog/the-future-of-vr
https://www.workplace.com/blog/the-future-of-vr
https://github.com/immersive-web/webxr/blob/master/explainer.md
https://github.com/immersive-web/webxr/blob/master/explainer.md
https://immersiveweb.dev/
hhttps://wonderlandengine.com/about/what-is-wle/
hhttps://wonderlandengine.com/about/what-is-wle/
https://www.freshconsulting.com/insights/blog/ros-2-the-transition-from-research-to-production/
https://www.freshconsulting.com/insights/blog/ros-2-the-transition-from-research-to-production/
https://www.freshconsulting.com/insights/blog/ros-2-the-transition-from-research-to-production/
https://github.com/RobotWebTools/rclnodejs
https://github.com/RobotWebTools/rclnodejs
https://doi.org/10.1109/HSI.2018.8431062
https://doi.org/10.1109/HSI.2018.8431062
https://en.wikipedia.org/wiki/Quest_2
https://en.wikipedia.org/wiki/Quest_2
https://learn.adafruit.com/sideloading-on-oculus-quest/install-and-use-sidequest
https://learn.adafruit.com/sideloading-on-oculus-quest/install-and-use-sidequest
https://learn.adafruit.com/sideloading-on-oculus-quest/enable-developer-mode
https://learn.adafruit.com/sideloading-on-oculus-quest/enable-developer-mode

[27] Wikipedia Contributors. Unity. https://en.wikipedia.org/wiki/Unity_
(game_engine).

[28] Ros2 for Unity. https://github.com/RobotecAI/ros2-for-unity.

[29] Ros2 for Unity setup tutorial. https://www.youtube.com/watch?v=1X6uzrvNwCk.

[30] Paul Bremner, Thomas J. Mitchell, and Verity McIntosh. “The impact of data
sonification in virtual reality robot teleoperation”. In: Frontiers in Virtual Reality
3 (2022). ISSN: 2673-4192. DOI: 10.3389/frvir.2022.904720. URL: https:
//www.frontiersin.org/articles/10.3389/frvir.2022.904720.

74

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://github.com/RobotecAI/ros2-for-unity
https://www.youtube.com/watch?v=1X6uzrvNwCk
https://doi.org/10.3389/frvir.2022.904720
https://www.frontiersin.org/articles/10.3389/frvir.2022.904720
https://www.frontiersin.org/articles/10.3389/frvir.2022.904720

Appendix

Source Code
This thesis PDF comes in a .zip archive along with supplementary archives containing
the source code of the interface and the ROS 2 workspace for the simulation.

Factory.zip contains the Wonderland Engine project. After installing the latest
version of the engine from the official website: https://wonderlandengine.com/
downloads/, the project can be loaded and executed on the HTML server. Alternatively,
the deploy/ folder can be hosted directly on a separate HTML server following these
instructions https://wonderlandengine.com/release/.

Note: the interface was tested on a local network and the IP address of the server
is hard-coded in some of the JavaScript scripts under the Factory/js/ directory. You
should set the IP of your server at the appropriate line in the following scripts: screen2.js,
robot-component.js, goal-pose.js and robot-teleop.js.

The archive also contains the WebSocket server files under the Factory/server/
directory.

turtlebot3_ws.zip contains the ROS 2 workspace for the Gazebo simulation. To
execute it, ROS 2 Foxy must be installed, as well as all the Turtlebot3 for ROS 2
Foxy dependencies (follow the guide here: https://emanual.robotis.com/docs/en/
platform/turtlebot3/quick-start/.

In the workspace, the launch files useful for the simulation are contained in the
following directory:

turtlebot3_ws/src/turtlebot3_multi_robot_sim/launch/

Running the Interface
Note: The interface is experimental. Running it requires several terminals, and the order
of execution of each part is important. If a terminal contains an error, close all processes
with CTRL+C and start over.

To run the simulation and the interface, first launch the VR app on the HTML server (It
is much easier from WLE). Then, start the WebSocket server with the start_term.bash
script (This should open several terminals, check for errors). Then, run the simulation
with (in order):

multi_robot_spawn_launch.xml
multi_robot_slam_launch.launch.py

75

https://wonderlandengine.com/downloads/
https://wonderlandengine.com/downloads/
https://wonderlandengine.com/release/
https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/
https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/

GitHub Repository
The project’s source code is also available on GitHub at https://github.com/Gautier30/
ROS2_VR_Interface.

76

https://github.com/Gautier30/ROS2_VR_Interface
https://github.com/Gautier30/ROS2_VR_Interface

Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Gautier Reynes,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

VR-Enhanced Remote Inspection Framework for Semi-Autonomous Robot
Fleet,

(title of thesis)

supervised by Robert Valner and Ulrich Norbisrath.
(supervisors’ names)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Gautier Reynes
09/11/2023

77

	Introduction
	Problem Statement
	Objectives
	Structure

	Background and Related Work
	State of the Art Robotics in Disaster Management
	Search and Rescue
	Environment Monitoring
	Inspection
	Human-Machine Interfaces

	VR Teleoperation
	Space Robots
	Underwater Robots
	Construction Robots
	Disaster Management Robots

	VR outside the gaming domain

	Requirements
	Architecture
	VR graphics API
	WebXR
	Wonderland Engine

	Robot Setup
	ROS 2
	Robot Compatibility

	Communication Infrastructure

	Interface Design
	Menu
	Sensor Screen
	Robot Component
	Teleoperation, Goal Pose, Teleportation and Snap Turn
	Screen & Robot Camera Grabber Components
	Switching from VR to robot POV

	Demonstration
	Hardware setup
	Oculus Quest 2
	Lenovo Ideapad 5 Notebook

	Software setup
	Gazebo simulation

	Demonstration in Simulated Environment

	Discussion
	Hand Tracking
	Correcting SLAM generated maps
	Why not Unity?
	Live Video Stream
	Future Work

	Conclusion
	Acknowledgments
	References
	Appendix
	Source Code
	Running the Interface
	GitHub Repository

	Licence

