P740.HW2.sol.tex

1. To go from the viscosity to a cross section for a gas at 1 atm and 300 K: $\eta \approx \rho D_{\eta}$, $D_{\eta} \approx v \lambda$, $\lambda = 1/n\sigma$ ($\rho = mn$)

$$\sigma \approx \frac{mv}{\eta} \tag{1}$$

where $v^2 \sim k_B T/m$.

When crunching numbers it can help to write a short program

eta.m

There is a possible ambiguity, the cross section is usually denoted by σ and so is the length scale involved in the Lennard-Jones interaction. But the units are different.

2. Begin with (b). Note that the m in Eq. (3) is in the wrong place. Eq. (2) and (3) are essentially the same. Use

$$\frac{p^2}{2m} - pQ = \frac{1}{2m}(p - mQ)^2 - m\frac{Q^2}{2} = \frac{m}{2}(v - u)^2 - m\frac{Q^2}{2}$$
 (2)

where p = mv and u = Q. Since the p integration is from $-\infty$ to $+\infty$ when calculating the average of p you can shift the origin of integration to $p_Q = mQ$ so that the argument

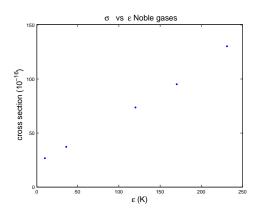


FIG. 1: σ vs ϵ .

in the numerator of the momentum average shifts to mQ, i.e., p = mQ + (p - mQ). Thus = mQ. Or using the Eq. (2) above = mu.

3. The probability scales as v/v_T where $v_T^2 = 2/m\beta$. So use $x = v/v_T$

$$f(x) = \frac{1}{\sqrt{\pi}} exp(-x^2). \tag{3}$$

Then

$$\int_{-\infty}^{+\infty} dx \ f(x) = 2 \int_{0}^{+\infty} dx \ f(x) = 1$$
 (4)

and

$$<|v|> = v_T < x > = v_T 2 \int_0^{+\infty} dx \ x f(x) = \frac{v_T}{\sqrt{\pi}}.$$
 (5)

To find $P_{>}$ use $x_{>} = 1/\sqrt{\pi} = 0.5642$ and

$$P_{>} = 2 \int_{x_{>}}^{+\infty} dx \ f(x) = 1 - 2 \int_{0}^{x_{>}} dx \ f(x) = 1 - erf(x_{>}) = 0.4249.$$
 (6)

As a test of the numbers use the cumulative probability, P(x), defined by

$$P(x) = 2\int_0^x dx \ f(x), \tag{7}$$

the probability that v/v_T is less than x. see Fig. 2. [It doesn't hurt to test results numerically.]

% fofv.m

clear
% Since
$$f(-x) = f(x)$$
 use $f(x) = (2/\sqrt{pi})exp - x^2$
% values of x, f(x)

N=1000;
x=linspace(0,6,N)';
xx=x.*x;
dx=x(2)-x(1);
Cnorm=2/sqrt(pi);
fofx=Cnorm*exp(-xx);
% dress the norm for numerical errors
Inorm=dx*sum(fofx)
fofx=fofx/Inorm;
% cumulative probability
Pofx=cumsum(dx*fofx);
% < |v| > /v_T

vbar=dx*sum(x.*fofx); % (numerical)
vbarT=1/sqrt(pi); % (analytic)
% compare numerical and analytic result
look=[vbar vbarT]
Pgreater = 1-erf(vbar)
% to make a figure

X=[vbar vbar];
Y=[0 1.5];
plot(x,fofx,X,Y,x,Pofx)
axis([0 3 0 1.2])
xlabel('x = v/v_T', 'Fontsize',16)
ylabel('f(x)', 'Fontsize',16)

title('f(x) and P(x) vs x', 'Fontsize', 16)

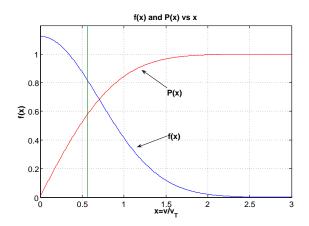


FIG. 2: f(x) and P(x) vs x..

grid

4. This is essentially the same as problem 3 on HW1. For $\epsilon \ll 1$ expect

$$\langle x \rangle = \epsilon a N = \epsilon a \frac{t}{\tau},$$
 (8)

$$\langle x \rangle = \epsilon a N = \epsilon a \frac{t}{\tau}, \tag{8}$$

$$\langle x^2 \rangle - \langle x \rangle^2 = a^2 N = a^2 \frac{t}{\tau}, \tag{9}$$

where a is the step length and τ is the step time. The particles average position moves proportional to time. The particle diffuses relative to its average position just as it does when there is no bias. When ϵ approaches 1 this simple result is modified as it must be for at $\epsilon = 1$ the walk is a completely deterministic walk, every step to the right.